Abstract
The depths of the oceans have a high potential for future industrial development and applications. Robotic autonomous systems will greatly depend on a reliable communications channel with operators and equipment either performing joint operations or on the surface. However, communications must face harsh conditions that hinder the performance. Neither electromagnetic nor optical technologies are suitable for communication because of their short range in this medium. Due to this, acoustic equipment is envisaged as the most appropriate technology, even though it suffers several negative effects such as strong attenuation at high (ultrasonic) frequencies, Doppler shifts and a time-varying multipath. In this paper, we describe the characteristics of the acoustic underwater channel and how it impacts the mechanisms at the link and network layers.
Similar content being viewed by others
References
3rd Generation Partnership Project (3GPP) 36.104, Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception.
Akyildiz I. F., Pompili D., Melodia T. (2005) Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks 3: 257–279
Brekhovskikh L. M., Lysanov Y. P. (2003) Fundamentals of ocean acoustics, 3rd ed. Springer, New York
Carlson, E. A., Beaujean, P. P., & An, E. (2006). Location-aware routing protocol for underwater acoustic networks,OCEANS, pp. 1–6.
Chitre, M., Shahabudeen, S., Freitag, L., Stojanovic, M. (2008). Recent advances in underwater acoustic communications & networking. OCEANS.
Entrambasaguas, J. T., Aguayo-Torres, M. C., Poncela, J., & Gómez, G. (2009, May). Role of convergence in GIMCV development: A vision. Wireless Personal Communications, pp. 321–324.
Foo, K. Y., Atkins, P. R., Collins, T., Morley, C., & Davies, J. (2004). A routing and channel-access approach for an ad hoc underwater acoustic networks. MTS/IEEE OCEANS ’04, pp. 789–795 Vol. 2.
Frassati F., Lafon C., Laurent P.-A., Passerieux J.-M. (2005) Experimental assessment of OFDM and DSSS modulations for use in littoral waters underwater acoustic communications. Oceans 2005—Europe 2: 826–831
Hobart E., Allsup G., Hosom D., Baldasarre T. (2000) Acoustic modem unit. Proceedings of IEEE Oceans Conference 2: 769–772
Huang, J., Zhou, S., Huang, J., Berger, C. R., & Willett, P. Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels. IEEE Journal of Selected Topics in Signal Processing (to appear).
Iltis R., Lee H., Kastner R., Doonan D., Fu T., Moore R., Chin M. (2005) An underwater acoustic telemetry modem for eco-sensing. Proceedings of IEEE Oceans Conference 2: 1844–1850
Kun, Z., Sen, Q. S., Aik, K. T., Aik, T. B. (2007). A real-time coded OFDM acoustic modem in very shallow underwater communications. OCEANS 2006—Asia Pacific, pp. 1–5.
Li B., Zhou S., Stojanovic M., Freitag L., Willett P. (2008) Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE Journal of Oceanic Engineering 33(2): 198–209
Mackenzie K. V. (1981) Discussion of sea-water sound-speed determinations. Journal of the Acoustical Society of America 70(3): 801–806
Mason S. F., Berger C. R., Zhou S., Willett P. (2008) Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication. IEEE Journal on Selected Areas in Communications 26(9): 1638–1649
Morris J. M. (1979) Optimal blocklengths for ARQ error control schemes. IEEE Transactions on Communication 27: 488–493
Preisig J. (2007) Acoustic propagation considerations for underwater acoustic communications network development. ACM SIGMOBILE Mobile Computing Communications Review 11(4): 2–10
Qarabaqi, P., & Stojanovic, M. (2009). Statistical modeling of a shallow water acoustic communication channel (invited paper). In Proceedings of 3rd underwater acoustic measurements conference, Nafplion, Greece.
Radosevic, A., Proakis, J., & Stojanovic, M. (2009). Statistical characterization and capacity of shallow water acoustic channels. IEEE Oceans Europe Conference.
Rice, J., Creber, B., Fletcher, C., & Baxley, P. et al (2000). Evolution of Seaweb underwater acoustic networking. OCEANS 2000 MTS/IEEE.
Scussel K. F., Rice J. A., Merriam S. (1997) A new mfsk acoustic modem for operation in adverse underwater channels. Proceedings of IEEE Oceans Conference 1: 247–254
Sharif B. S., Neasham J., Hinton O. R., Adams A. E. (2000) A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE Journal of Oceanic Engineering 25(1): 52–61
Sozer E. M. (2005) Simulation and rapid prototyping environment for underwater acoustic communications: Reconfigurable modem. Proceedings of IEEE Oceans Europe Conference 1: 80–85
Stojanovic, M. (2005). Optimization of a data link protocol for an underwater acoustic channel. Proceedings of IEEE OCEANS’05 conference.
Stojanovic, M. (2008). OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation. IEEE international conference on acoustics, speech and signal processing, ICASSP 2008, pp. 5288–5291.
Stojanovic M., Preisig J. (2009) Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine 47(1): 84–89
Syed A., Ye W., Heidemann J. (2008) Comparison and evaluation of the T-Lohi MAC for underwater acoustic sensor networks. IEEE Journal on Selected Areas in Communications 26(9): 1731–1743
van de Beek, J., Ödling, P., Wilson, S. & Börjesson, P. (2002). Review of Radio Science, 1996–1999, Orthogonal Frequency Division Multiplexing (OFDM). Wiley: London.
Wong, Y. F., Ngoh, L. H., Wong, W. C., & Seah, W. K. G. (2006). Intelligent sensor monitoring for industrial underwater applications. IEEE International Conference on Industrial Informatics, pp. 144–149.
Yang W. B., Yang T. C. (2006) High-frequency channel characterization for M-ary frequency-shift-keying underwater acoustic communications. Journal of Acoustic Society of America 120(5): 2615–2626
Zorzi M., Casari P., Baldo N., Harris A.F. III (2008) Energy-efficient routing schemes for underwater acoustic networks. IEEE Journal on Selected Areas in Communications 26(9): 1754–1766
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Poncela, J., Aguayo, M.C. & Otero, P. Wireless Underwater Communications. Wireless Pers Commun 64, 547–560 (2012). https://doi.org/10.1007/s11277-012-0600-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-012-0600-z