Abstract
We present a novel method for the estimation of variance parameters in generalised linear mixed models. The method has its roots in Harville (J Am Stat Assoc 72(358):320–338, 1977)’s work, but it is able to deal with models that have a precision matrix for the random effect vector that is linear in the inverse of the variance parameters (i.e., the precision parameters). We call the method SOP (separation of overlapping precision matrices). SOP is based on applying the method of successive approximations to easy-to-compute estimate updates of the variance parameters. These estimate updates have an appealing form: they are the ratio of a (weighted) sum of squares to a quantity related to effective degrees of freedom. We provide the sufficient and necessary conditions for these estimates to be strictly positive. An important application field of SOP is penalised regression estimation of models where multiple quadratic penalties act on the same regression coefficients. We discuss in detail two of those models: penalised splines for locally adaptive smoothness and for hierarchical curve data. Several data examples in these settings are presented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88(421), 9–25 (1993)
Camarda, C.G., Eilers, P.H., Gampe, J.: Sums of smooth exponentials to decompose complex series of counts. Stat. Model. 16(4), 279–296 (2016)
Crainiceanu, C.M., Ruppert, D., Carroll, R.J., Joshi, A., Goodner, B.: Spatially adaptive Bayesian penalized splines with heteroscedastic errors. J. Comput. Graph. Stat. 16(2), 265–288 (2007)
Crump, S.L.: The present status of variance component analysis. Biometrics 7(1), 1–16 (1951)
Cui, Y., Hodges, J.S., Kong, X., Carlin, B.P.: Partitioning degrees of freedom in hierarchical and other richly-parameterized models. Technometrics 52, 124–136 (2010)
Currie, I.D., Durban, M.: Flexible smoothing with P-splines: a unified approach. Stat. Model. 2(4), 333–349 (2002)
Currie, I.D., Durban, M., Eilers, P.H.C.: Generalized linear array models with applications to multidimensional smoothing. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(2), 259–280 (2006)
Davies, P.L., Gather, U., Meise, M., Mergel, D., Mildenberger, T.: Residual-based localization and quantification of peaks in X-ray diffractograms. Ann. Appl. Stat. 2(3), 861–886 (2008)
Davies, P.L., Gather, U., Meise, M. Mergel, D., Mildenberger, T., Bernholt, T., Hofmeister, T.: diffractometry: baseline identification and peak decomposition for x-ray diffractograms. R package version 0.1-10 (2018)
Djeundje, V.A., Currie, I.D.: Appropriate covariance-specification via penalties for penalized splines in mixed models for longitudinal data. Electron. J. Stat. 4, 1202–1224 (2010)
Durban, M., Aguilera-Morillo, M.C.: On the estimation of functional random effects. Stat. Model. 17(1–2), 50–58 (2017)
Durban, M., Harezlak, J., Wand, M.P., Carroll, R.J.: Simple fitting of subject-specific curves for longitudinal data. Stat. Med. 24(8), 1153–1167 (2005)
Eilers, P.H.C.: Discussion of Verbyla et al. J. R. Stat. Soc. Ser. C (Appl. Stat.) 48, 300–311 (1999)
Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–121 (1996)
Engel, B.: The analysis of unbalanced linear models with variance components. Stat. Neerl. 44, 195–219 (1990)
Engel, B., Buist, W.: Analysis of a generalized linear mixed model: a case study and simulation results. Biom. J. 38(1), 61–80 (1996)
Engel, B., Keen, A.: A simple approach for the analysis of generalizea linear mixed models. Stat. Neerl. 48(1), 1–22 (1994)
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)
Gilmour, A.R., Thompson, R., Cullis, B.R.: Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51(4), 1440–1450 (1995)
Goldsmith, J., Bobb, J., Crainiceanu, C.M., Caffo, B., Reich, D.: Penalized functional regression. J. Comput. Graph. Stat. 20(4), 830–851 (2011)
Goldsmith, J., Crainiceanu, C.M., Caffo, B., Reich, D.: Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. J. R. Stat. Soc. Ser. C (Appl. Stat.) 61(3), 453–469 (2012)
Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean, M.W., Swihart, B., Xiao, L., Crainiceanu, C., Reiss, P.T.: refund: Regression with Functional Data. R package version 0.1-16 (2016)
Graser, H.-U., Smith, S.P., Tier, B.: A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood. J. Anim. Sci. 2(64), 1362–1373 (1987)
Green, P.J.: Penalized likelihood for general semi-parametric regression models. Int. Stat. Rev./Revue Internationale de Statistique 55(3), 245–259 (1987)
Greven, S., Scheipl, F.: A general framework for functional regression modelling. Stat. Model. 17(1–2), 1–35 (2017)
Groll, A., Tutz, G.: Variable selection for generalized linear mixed models by L1-penalized estimation. Stat. Comput. 24(2), 137–154 (2014)
Harville, D.A.: Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc. 72(358), 320–338 (1977)
Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, Berlin (1997)
Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall, London (1990)
Heckman, N., Lockhart, R., Nielsen, J.D.: Penalized regression, mixed effects models and appropriate modelling. Electron. J. Stat. 7, 1517–1552 (2013)
Henderson, C.R.: Selection index and expected genetic advance. Stat. Genet. Plant Breed. 982, 141–163 (1963)
Hunter, D.R., Li, R.: Variable selection using MM algorithms. Ann. Stat. 33(4), 1617–1642 (2005)
Johnson, D.L., Thompson, R.: Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information. J. Dairy Sci. 78, 449–456 (1995)
Karas, M., Brzyski, D., Dzemidzic, M., Goñi, J., Kareken, D.A., Randolph, T.W., Harezlak, J.: Brain connectivity-informed regularization methods for regression. Stat. Biosci. (2017). https://doi.org/10.1007/s12561-017-9208-x
Krivobokova, T.: Smoothing parameter selection in two frameworks for penalized splines. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 75(4), 725–741. https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12010 (2009)
Krivobokova, T., Crainiceanu, C.M., Kauermann, G.: Fast adaptive penalized splines. J. Comput. Graph. Stat. 17(1), 1–20 (2008)
Lee, D.-J.: Smoothing mixed model for spatial and spatio-temporal data. PhD thesis. Department of Statistics, Universidad Carlos III de Madrid, Spain (2010)
McCullagh, P., Nelder, J.: Generalized Linear Models. Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series, 2nd edn. Chapman & Hall, London (1989)
Patterson, H.D., Thompson, R.: Recovery of inter-block information when block sizes are unequal. Biometrika 58(3), 545–554 (1971)
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018)
Reiss, P .T., Ogden, R .T.: Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71(2), 505–523 (2009)
Rodríguez-Álvarez, M.X., Durban, M., Lee, D.-J., Eilers, P.H.C.: Fast estimation of multidimensional adaptive p-spline models. In: Friedl, H., Wagner, H. (eds.) Proceedings of the 30th International Workshop on Statistical Modelling, pp 330 – 335. arXiv:1610.06861 (2015a)
Rodríguez-Álvarez, M.X., Lee, D.-J., Kneib, T., Durban, M., Eilers, P.H.C.: Fast smoothing parameter separation in multidimensional generalized P-splines: the sap algorithm. Stat. Comput. 25, 941–957 (2015b)
Rodríguez-Álvarez, M.X., Durban, M., Lee, D.-J., Eilers, P.H.C., Gonzalez, F.: Spatio-temporal adaptive penalized splines with application to neuroscience. In: Dupuy, J.-F., Josse, J. (eds.) Proceedings of the 31th International Workshop on Statistical Modelling, pp. 267–272. arXiv:1610.06860 (2016)
Rodríguez-Álvarez, M.X., Boer, M.P., van Eeuwijk, F.A., Eilers, P.H.: Correcting for spatial heterogeneity in plant breeding experiments with p-splines. Spat. Stat. 23, 52–71 (2018)
Ruppert, D., Carroll, R.J.: Spatially-adaptive penalties for spline fitting. Aust. N. Z. J. Stat. 42(2), 205–223 (2000)
Ruppert, D., Wand, M.P., Carroll, R.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)
Schall, R.: Estimation in generalized linear models with random effects. Biometrika 78(4), 719–727 (1991)
Simpkin, A., Newell, J.: An additive penalty p-spline approach to derivative estimation. Comput. Stat. Data Anal. 68, 30–43 (2013)
Smith S.P.: Estimation of genetic parameters in non-linear models. In: Gianola, D., Hammond, K. (eds.) Advances in Statistical Methods for Genetic Improvement of Livestock. Advanced Series in Agricultural Sciences, vol. 18. Springer, Berlin, Heidelberg (1990)
Taylor, J.D., Verbyla, A.P., Cavanagh, C., Newberry, M.: Variable selection in linear mixed models using an extended class of penalties. Aust. N. Z. J. Stat. 54(4), 427–449 (2012)
Tibshirani, R.J.: Adaptive piecewise polynomial estimation via trend filtering. Ann. Stat. 42(1), 285–323 (2014)
Wand, M.P.: Smoothing and mixed models. Comput. Stat. 18(2), 223–249 (2003)
Wood, S.N.: Fast stable direct fitting and smoothness selection for generalized additive models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 70(3), 495–518 (2008)
Wood, S .N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73(1), 2–36 (2011)
Wood, S.N.: Generalized Additive Models: An Introduction with R, 2nd edn. Chapman & Hall CRC, London (2017)
Wood, S.N., Fasiolo, M.: A generalized Fellner-Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models. Biometrics 73, 1071–1081 (2017)
Wood, S.N., Pya, N., Säfken, B.: Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111(516), 1548–1563 (2016)
Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models. Ann. Stat. 36(4), 1509–1533 (2008)
Acknowledgements
This research was supported by the Basque Government through the BERC 2018-2021 program and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and through projects MTM2017-82379-R funded by (AEI/FEDER, UE) and acronym “AFTERAM”, MTM2014-52184-P and MTM2014-55966-P. The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute. We are grateful to Pedro Caro and Iain Currie for useful discussions, to Martin Boer and Cajo ter Braak for the detailed reading of the paper and their many suggestions, and to Bas Engel for sharing with us his knowledge. We are also grateful to the two peer referees for their constructive comments of the paper.
Author information
Authors and Affiliations
Corresponding author
Appendices
A Proof of Theorem 1
Proof
We first note that the first-order partial derivatives of the (approximate) REML log-likelihood function can be expressed as (see, e.g., Rodríguez-Álvarez et al. 2015b)
Given that \({\varvec{G}}\) is a positive definite matrix, we have the identity
and thus
where \({\varvec{0}}^{(1)}\) and \({\varvec{0}}^{(2)}\) are zero square matrices of appropriate dimensions.
The first-order partial derivatives of the REML log-likelihood function are then expressed as
When the REML estimates are positive, they are obtained by equating the former expression to zero (see, e.g., Engel 1990)
We now multiply both sides with \(\sigma _{k_l}^2\) and evaluate the left-hand side for the previous iterates and the right-hand side for the update, obtaining
\(\square \)
B Proof of Theorem 2
Proof
First let us recall some notation and introduce some needed results. We denote as \({\varvec{P}} = {\varvec{V}}^{-1} - {\varvec{V}}^{-1}{\varvec{X}}\left( {\varvec{X}}^{\top }{\varvec{V}}^{-1}{\varvec{X}}\right) {\varvec{X}}^{\top }{\varvec{V}}^{-1}\), where \({\varvec{V}} = {\varvec{R}} + {\varvec{Z}}{\varvec{G}}{\varvec{Z}}^{\top }\), \({\varvec{R}} = \phi {\varvec{W}}^{-1}\) with \({\varvec{W}}\) being the diagonal weight matrix involved in the Fisher scoring algorithm.
Denote as \({\mathcal {C}}\left( {\varvec{A}}\right) \) the linear space spanned by the columns of \({\varvec{A}}\), and let \({\varvec{P}}_{{\varvec{X}}{\varvec{V}}^{-1}} = {\varvec{X}}\left( {\varvec{X}}^{\top }{\varvec{V}}^{-1}{\varvec{X}}\right) ^{-1}{\varvec{X}}^{\top }{\varvec{V}}^{-1}\) be the orthogonal projection matrix for \({\mathcal {C}}\left( {\varvec{X}}\right) \) with respect to \({\varvec{V}}^{-1}\). It is easy to show that
By Theorem 14.2.9 in Harville (1997), \({\varvec{P}}\) is a (symmetric) positive semi-definite matrix. In addition,
and
Thus,
i.e., \({\varvec{P}}{\varvec{x}} = {\varvec{0}}\) if and only if \({\varvec{x}}\) is in \({\mathcal {C}}\left( {\varvec{X}}\right) \).
Let \(\varvec{\Lambda }_{k_l} = {\varvec{U}}{\varvec{\Sigma }}{\varvec{U}}^{\top }\) be the eigenvalue decomposition of \(\varvec{\Lambda }_{k_l}\). Note that \(\varvec{\Lambda }_{k_l} = {\varvec{U}}_{+}{\varvec{\Sigma }}_{+}{\varvec{U}}_{+}^{\top }\), where \({\varvec{U}}_{+}\) and \({\varvec{\Sigma }}_{+}\) are the sub-matrices corresponding to the nonzero eigenvalues. Then
with equality holding if and only if \({\varvec{U}}_{+}^{\top }{\varvec{G}}_k{\varvec{Z}}_k^{\top }{\varvec{P}}{\varvec{z}} = {\varvec{0}}\) (since \({\varvec{\Sigma }}_{+}\) is positive definite). Thus, using result (26), the equality holds if \({\varvec{z}}\) is in \({\mathcal {C}}\left( {\varvec{X}}\right) \) or \({\mathcal {C}}\left( {\varvec{Z}}_k{\varvec{G}}_k{\varvec{U}}_{+}\right) \subset {\mathcal {C}}\left( {\varvec{X}}\right) \). By Lemma 4.2.2 and Corollary 4.5.2 in Harville (1997), we have
Regarding the denominator of the REML-based estimates updates, we follow a similar reasoning. Using Corollary 14.7.5 (and Theorem 14.2.9) in Harville (1997), we have
with equality holding if and only if \({\varvec{U}}_{+}^{\top }{\varvec{G}}_k{\varvec{Z}}_k^{\top }{\varvec{P}}{\varvec{Z}}_k{\varvec{G}}_k{\varvec{U}}_{+} = {\varvec{0}}\). Again, this equality holds if and only if \({\mathcal {C}}\left( {\varvec{Z}}_k{\varvec{G}}_k{\varvec{U}}_{+}\right) \subset {\mathcal {C}}\left( {\varvec{X}}\right) \) (i.e., \(\iff \hbox {rank}\left( {\varvec{Z}}_k{\varvec{G}}_k\varvec{\Lambda }_{k_l},{\varvec{X}}\right) = \hbox {rank}\left( {\varvec{X}}\right) \)). \(\square \)
C Estimating algorithm
This appendix summarises the steps of the estimating algorithm for model (10) based on the SOP method. Recall that interest lies in estimating model
where \({\varvec{Z}} = \left[ {\varvec{Z}}_{1},\ldots ,{\varvec{Z}}_{c}\right] \), \(\varvec{\alpha } = \left( \varvec{\alpha }_{1}^{\top },\ldots ,\varvec{\alpha }_{c}^{\top }\right) ^{\top }\), \(\varvec{\alpha }_k\sim N\left( {\varvec{0}}, {\varvec{G}}_k\right) \) with \( {\varvec{G}}_{k}^{-1} = \sum _{l = 1}^{p_k}\sigma _{k_l}^{-2}\varvec{\Lambda }_{k_l}\), and \(\varvec{\alpha }\sim N\left( {\varvec{0}}, {\varvec{G}}\right) \) with \({\varvec{G}} = \bigoplus _{k = 1}^{c}{\varvec{G}}_{k}\).
-
Initialise
Set initial values for \(\widehat{{\varvec{\mu }}}^{[0]}\) and the variance parameters \({\widehat{\sigma }}_{k_l}^{2[0]}\) (\(l = 1,\ldots ,p_k\) and \(k = 1, \ldots , c\)). In those situations where \(\phi \) is unknown, establish an initial value for this parameter, \({\widehat{\phi }}^{[0]}\). Set \(t = 0\).
-
Step 1
Construct the working response vector \({\varvec{z}}\) and the matrix of weights \({\varvec{W}}\) as follows
$$\begin{aligned} z_i = g({\widehat{\mu }}_i^{[t]}) + (y_i - {\widehat{\mu }}_i^{[t]})g^{\prime }({\widehat{\mu }}_i^{[t]}), \\ w_{ii} = \left\{ g'({\widehat{\mu }}_i^{[t]})^2\nu ({\widehat{\mu }}_i^{[t]})\right\} ^{-1}. \end{aligned}$$-
Step 1.1
Given the initial estimates of variance parameters, estimate \(\varvec{\alpha }\) and \(\varvec{\beta }\) by solving
$$\begin{aligned} \underbrace{ \begin{bmatrix} {\varvec{X}}^{\top }{{\varvec{R}}^{[t]}}^{-1}{\varvec{X}}&{\varvec{X}}^{\top }{{\varvec{R}}^{[t]}}^{-1}{\varvec{Z}} \\ {\varvec{Z}}^{\top }{{\varvec{R}}^{[t]}}^{-1}{\varvec{X}}&{\varvec{Z}}^{\top }{{\varvec{R}}^{[t]}}^{-1}{\varvec{Z}} + {{\varvec{G}}^{[t]}}^{-1} \end{bmatrix}}_{{\varvec{C}}^{[t]}} \begin{bmatrix} \varvec{{\widehat{\beta }}}\\ \varvec{{\widehat{\alpha }}} \end{bmatrix} = \begin{bmatrix} {\varvec{X}}^{\top }{{\varvec{R}}^{[t]}}^{-1}{\varvec{z}}\\ {\varvec{Z}}^{\top }{{\varvec{R}}^{[t]}}^{-1}{\varvec{z}} \end{bmatrix},\nonumber \\ \end{aligned}$$(27)where \({\varvec{R}}^{[t]} = {\widehat{\phi }}^{[t]}{\varvec{W}}^{-1}\). Let \(\varvec{{\widehat{\alpha }}}^{[t]}\) and \(\varvec{{\widehat{\beta }}}^{[t]}\) be these estimates.
-
Step 1.2
Update the variance parameters as follows
$$\begin{aligned} {\widehat{\sigma }}^{2}_{k_l} = \frac{\widehat{\varvec{\alpha }}_k^{{[t]}\top }\varvec{\Lambda }_{k_l}\widehat{\varvec{\alpha }}_k^{[t]}}{\hbox {ED}_{k_l}^{[t]}}, \end{aligned}$$and, when necessary,
$$\begin{aligned} {\widehat{\phi }} = \frac{\left( {\varvec{z}}-{\varvec{X}}\varvec{{\widehat{\beta }}}^{[t]}-{\varvec{Z}}\varvec{{\widehat{\alpha }}}^{[t]}\right) ^{\top }{\varvec{W}}\left( {\varvec{z}}-{\varvec{X}}\varvec{{\widehat{\beta }}}^{[t]}-{\varvec{Z}}\varvec{{\widehat{\alpha }}}^{[t]}\right) }{n - \hbox {rank}({\varvec{X}}) - \sum _{k=1}^c\sum _{l=1}^{p_k}\hbox {ED}_{k_l}^{[t]}}, \end{aligned}$$with
$$\begin{aligned} \hbox {ED}_{k_l}^{[t]} = \hbox {trace}\left( \left( {\varvec{G}}^{[t]}_k - {{\varvec{C}}^{[t]}}^{*}_{kk}\right) \frac{\varvec{\Lambda }_{k_l}}{{{\widehat{\sigma }}_{k_l}^{2[t]}}}\right) . \end{aligned}$$Recall that \({{\varvec{C}}^{[t]}}^{*}\) denotes the inverse of \({\varvec{C}}^{[t]}\) in (27), and \({{\varvec{C}}^{[t]}}^{*}_{kk}\) is that partition of \({{\varvec{C}}^{[t]}}^{*}\) corresponding to the k-th random component \(\varvec{\alpha }_k\).
-
Step 1.3
Repeat Step 1.1 and Step 1.2, replacing \({\widehat{\sigma }}_{k_l}^{2[t]}\), and, if updated, \({\widehat{\phi }}^{[t]}\), by \({\widehat{\sigma }}_{k_l}^{2}\) and \({\widehat{\phi }}\), until convergence. For the examples presented in Sect. 5, we use the REML deviance as the convergence criterion.
-
Step 1.1
-
Step 2
Repeat Step 1, replacing the variance parameters and the model’s fixed and random effects (and thus \(\widehat{{\varvec{\mu }}}^{[t]}\)) by those obtained in the last iteration of Steps 1.1–Step 1.3, until convergence.
It is worth noting that for notational convenience, in the examples described in Sect. 4, the precision matrix was rewritten as \({\varvec{G}}^{-1} = \sum _{l=1}^{p}\sigma _l^{-2}\widetilde{\varvec{\Lambda }}_l\), where \(p = \sum _{k=1}^{c}p_k\) is the number of variance parameters, and \(\widetilde{\varvec{\Lambda }}_l\) are the matrices \(\varvec{\Lambda }_{k_l}\) padded out with zeroes. Here, \(\widetilde{\varvec{\Lambda }}_l\) are matrices of dimension \(q \times q\), where \( q = \sum _{k=1}^{c}q_k\) is the number of random effects coefficients. For this specification, the estimating algorithm discussed above remains essentially the same, but in Step 1.2, \(\varvec{\alpha }^{[t]}_k\), \({\varvec{G}}^{[t]}_k\), and \(\varvec{\Lambda }_{k_l}\) are replaced by, respectively, \(\varvec{\alpha }^{[t]}\), \({\varvec{G}}^{[t]}\) and \(\widetilde{\varvec{\Lambda }}_l\), and \({{\varvec{C}}^{[t]}}^{*}_{kk}\) would be that partition of \({{\varvec{C}}^{[t]}}^{*}\) corresponding to the random vector \(\varvec{\alpha }\) (and thus the same for all variance parameters).
D Factor-by-curve hierarchical curve model
This appendix describes in detail the factor-by-curve interaction model discussed in Sect. 5.3, i.e.,
where \(z_j = 1\) if the j-th individual is affected by MS (case) and \(z_j = 0\) otherwise (control). Let’s order the data with the observations on controls first, followed by observations on MS patients. In matrix notation, the model can be expressed as
with \({\varvec{B}}\), \(\breve{{\varvec{B}}}\), \(\breve{{\varvec{\theta }}}\) as defined in Sect. 4.2, and \(\varvec{\varepsilon } = \left( \varvec{\varepsilon }_{\cdot ,1}^{\top },\ldots , \varvec{\varepsilon }_{\cdot ,m}^{\top }\right) ^{\top }\), with \(\varvec{\varepsilon }_{\cdot j}= \left( \varepsilon _{1j},\ldots , \varepsilon _{sj}\right) ^{\top }\). Matrix \({\varvec{Q}}\) is any suitable contrast matrix of dimension \(m \times 2\), where \(m = m_0 + m_1\), with \(m_0\) being the number of controls and \(m_1\) the number of MS patients. For our application, we consider
and a different amount of smoothing is assumed for \(f_{0}\) and \(f_{1}\), i.e., the penalty matrix acting over the vector of coefficients \({\varvec{\theta }}\) is of the form
The reformulation as a mixed model can be done in a similar fashion to that described in Sect. 4.2, with, in this case
and
where
Rights and permissions
About this article
Cite this article
Rodríguez-Álvarez, M.X., Durban, M., Lee, DJ. et al. On the estimation of variance parameters in non-standard generalised linear mixed models: application to penalised smoothing. Stat Comput 29, 483–500 (2019). https://doi.org/10.1007/s11222-018-9818-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-018-9818-2