Abstract
This chapter discusses cautions, questions, challenges, and proposals regarding five issues that arise in generalized linear modeling. With primary emphasis on categorical data, we summarize (1) bias that can occur in using ordinary linear models with ordinal response variables, (2) a new proposal about simple ways to interpret effects in generalized linear models that use nonlinear link functions, (3) problems with using Wald significance tests and confidence intervals, (4) a question about the behavior of residuals for generalized linear models, and (5) a new approach in using generalized estimating equations (GEE) methods for marginal multinomial models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agresti, A. (2010) Analysis of ordinal categorical data (2nd ed.). London: Wiley.
Agresti, A. (2011) Score and pseudo score confidence intervals for categorical data analysis. Statistics in Biopharmaceutical Research, 3, 163–172.
Agresti, A. (2013). Categorical data analysis (3rd ed.). London: Wiley.
Agresti, A. (2015). Foundations of linear and generalized linear models. London: Wiley.
Agresti, A., & Coull, B. A. (1998). Approximate is better than exact for interval estimation of binomial parameters. American Statistician, 52, 119–126.
Agresti, A., & Kateri, M. (2016) Ordinal probability effect measures for group comparisons in multinomial cumulative link models. Biometrics, 73, 214–219.
Albert, A., & Anderson, J. A. (1984). On the existence of maximum likelihood estimates in logistic models. Biometrika, 71, 1–10.
Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B, 46, 1–30.
Anderson, J. A., & Philips, P. R. (1981). Regression, discrimination, and measurement models for ordered categorical variables. Applied Statistics, 30, 22–31.
Brown, L., Cai, T., & DasGupta, A. (2003). Interval estimation in exponential families. Statistica Sinica, 13, 19–49.
Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38.
Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74, 537–552.
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
Hauck, W. W., & Donner, A. (1977). Wald’s test as applied to hypotheses in logit analysis. Journal of the American Statistical Association, 72, 851–853.
Jørgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society, Series B, 49, 127–162.
Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.
Lipsitz, S. R., Kim, K., & Zhao, L. (1994). Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine, 13, 1149–1163.
Lipsitz, S., Laird, N., & Harrington, D. (1991). Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association. Biometrika, 78, 153–160.
Lovison, G. (2014). A note on adjusted responses, fitted values and residuals in generalized linear models. Statistical Modelling, 14, 337–359.
McKelvey, R. D., & Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology, 4, 103–120.
Touloumis, A., Agresti, A., & Kateri, M. (2013). GEE for multinomial responses using a local odds ratios parameterization. Biometrics, 69, 633–640.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Agresti, A. (2019). Some Issues in Generalized Linear Modeling. In: Ahmed, S., Carvalho, F., Puntanen, S. (eds) Matrices, Statistics and Big Data. IWMS 2016. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-17519-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-17519-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17518-4
Online ISBN: 978-3-030-17519-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)