Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Effects of screen size and visual presentation on visual fatigue based on regional brain wave activity

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

This article has been updated

Abstract

Advances in information technologies have resulted in people spending increasing amounts of time staring at electronic screens. Long-term use of computers, mobile phones, and tablets can cause eye soreness and fatigue, but can also cause more serious conditions including myopia, cataracts, and glaucoma. This study assesses changes in brain wave activity detected by eight electrodes targeting different brain regions to identify and assess the brain wave patterns in the regions associated with visual fatigue under various visual presentation methods. Furthermore, linear discriminant analysis and Min–Max scaling techniques are applied to develop a visual fatigue assessment model to quantify visual fatigue. Finally, experiments are run to assess the impact of screen size (smartphone, tablet, computer) and visual presentation mode (2D, 3D, AR, VR) on visual fatigue. This study finds that (1) the brain wave features which influence the reaction to 2D and 3D imaging are the delta and theta waves at the prefrontal Fp1 and Fp2 poles. When viewing AR images, the alpha bands at the O1 and O2 poles of the occipital lobe show a relatively clear impact, while the delta and theta waves at the C3 pole in the left center area are associated with VR images; (2) larger screens cause greater visual fatigue, indicating that excessive visual stimulation will increase visual loading and thus produce greater visual fatigue; (3) the results show that VR can cause quite severe visual fatigue, along with motion sickness passed on sensory mismatch. Therefore, it is recommended to avoid viewing experiences that are inconsistent with the brain’s physiological experience, such as walking while viewing a mobile phone, or reading in a moving car. The proposed visual fatigue assessment model provides easy and objective quantification of visual fatigue indicators, contributing to the reduction of risk for eye injury and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 03 November 2020

    The original article has been corrected: in Figure 4 the label for part (b) was missing

References

  1. Heuer H, Hollendiek G, Kröger H, Römer T (1989) Die Ruhelage der Augen und ihr Einfluß auf Beobachtungsabstand und visuelle Ermüdung bei Bildschirmarbeit (Rest position of the eyes and the influence of observation distance and visual fatigue on VDT work). Z Exp Angew Psychol 36(4):538–566

    Google Scholar 

  2. Li HO, Seo J, Kham K, Lee S (2008a) Method of measuring subjective 3D visual fatigue: a five-factor model. In: Digital holography and three-dimensional imaging (p. DWA5). Optical Society of America. https://doi.org/10.1364/DH.2008.DWA5

  3. Gutiérrez J, Pérez P, Jaureguizar F, Cabrera J, García N (2011) Subjective assessment of the impact of transmission errors in 3DTV compared to HDTV. In: 3DTV IEEE Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). pp 1–4.https://doi.org/10.1109/3DTV.2011.5877209

  4. Yano S, Ide S, Mitsuhashi T, Thwaites H (2002) A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 23(4):191–201. https://doi.org/10.1016/S0141-9382(02)00038-0

    Article  Google Scholar 

  5. Kim D, Jung YJ, Kim E, Ro YM, Park H (2011) Human brain response to visual fatigue caused by stereoscopic depth perception. In: 2011 International Conference on IEEE Digital Signal Processing (DSP). pp 1–5.https://doi.org/10.1109/ICDSP.2011.6004997

  6. Chen C, Li K, Wu Q, Wang H, Qian Z, Sudlow G (2013) EEG-based detection and evaluation of fatigue caused by watching 3DTV. Displays 34(2):81–88. https://doi.org/10.1016/j.displa.2013.01.002

    Article  Google Scholar 

  7. Chen C, Wang J, Li K, Wu Q, Wang H, Qian Z, Gu N (2014) Assessment visual fatigue of watching 3DTV using EEG power spectral parameters. Displays 35(5):266–272. https://doi.org/10.1016/j.displa.2014.10.001

    Article  Google Scholar 

  8. Wang AH, Chen MT (2000) Effects of polarity and luminance contrast on visual performance and VDT display quality. Int J Ind Ergon 25(4):415–421. https://doi.org/10.1016/S0169-8141(99)00040-2

    Article  Google Scholar 

  9. Lin CC, Huang KC (2006) Effects of ambient illumination and screen luminance combination on character identification performance of desktop TFT-LCD monitors. Int J Ind Ergon 36(3):211–218. https://doi.org/10.1016/j.ergon.2005.11.004

    Article  Google Scholar 

  10. Lin YH, Chen CY, Lu SY, Lin YC (2008) Visual fatigue during VDT work: effects of time-based and environment-based conditions. Displays 29(5):487–492. https://doi.org/10.1016/j.displa.2008.04.003

    Article  Google Scholar 

  11. Lee DS, Ko YH, Shen IH, Chao CY (2011) Effect of light source, ambient illumination, character size and interline spacing on visual performance and visual fatigue with electronic paper displays. Displays 32(1):1–7. https://doi.org/10.1016/j.displa.2010.09.001

    Article  Google Scholar 

  12. Chu C, Rosenfield M, Portello JK, Benzoni JA, Collier JD (2011) A comparison of symptoms after viewing text on a computer screen and hardcopy. Ophthalmic Physiol Opt 31(1):29–32. https://doi.org/10.1111/j.1475-1313.2010.00802.x

    Article  Google Scholar 

  13. Kooi FL, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25(2):99–108. https://doi.org/10.1016/j.displa.2004.07.004

    Article  Google Scholar 

  14. Lee EC, Heo H, Park KR (2010) The comparative measurements of eyestrain caused by 2D and 3D displays. IEEE Trans Consum Electron 56(3):1677–1683. https://doi.org/10.1109/TCE.2010.5606312

    Article  Google Scholar 

  15. Bando T, Iijima A, Yano S (2012) Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review. Displays 33(2):76–83. https://doi.org/10.1016/j.displa.2011.09.001

    Article  Google Scholar 

  16. Lee H, Whang KW (2012) A quantitative measurement of LCD and PDP TVs for human visual preference and fatigue. Displays 33(1):1–6. https://doi.org/10.1016/j.displa.2011.08.001

    Article  Google Scholar 

  17. Wang Q, Xu H, Gong R, Cai J (2015) Investigation of visual fatigue under LED lighting based on reading task. Optik 126(15–16):1433–1438. https://doi.org/10.1016/j.ijleo.2015.04.033

    Article  Google Scholar 

  18. Nunez PL, Srinivasan R (2007) Electroencephalogram. Scholarpedia 2(2):1348. https://doi.org/10.4249/scholarpedia.1348

    Article  Google Scholar 

  19. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176. https://doi.org/10.1126/science.3291116

    Article  Google Scholar 

  20. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2013) Principles of neural science, 5th edn. McGraw-Hill Medical, New York. ISBN:9780071390118

  21. Ribas GC (2010) The cerebral sulci and gyri. Neurosurg Focus 28(2):E2. https://doi.org/10.3171/2009.11.FOCUS09245

    Article  Google Scholar 

  22. Kim YJ, Lee EC (2011) EEG based comparative measurement of visual fatigue caused by 2D and 3D displays. In: International Conference on Human–Computer Interaction.https://doi.org/10.1007/978-3-642-22095-1_59

  23. Park S, Won MJ, Lee EC, Mun S, Park MC, Whang M (2015) Evaluation of 3D cognitive fatigue using heart–brain synchronization. Int J Psychophysiol 97(2):120–130. https://doi.org/10.1016/j.ijpsycho.2015.04.006

    Article  Google Scholar 

  24. Li HO (2010) Human factor research on the measurement of subjective three dimensional fatigue. J Broadcast Eng 15(5):607–616. https://doi.org/10.5909/JBE.2010.15.5.607

    Article  Google Scholar 

  25. Mourant RR, Chantadisai LR (1981) Visual fatigue and cathode ray tube display terminals. Hum Factors 23(5):529–540. https://doi.org/10.1177/001872088102300503

    Article  Google Scholar 

  26. Lunn R, Banks WP (1986) Visual fatigue and spatial frequency adaptation to video displays of text. Hum Fact J Hum Fact Ergon Soc 28(4):457–464. https://doi.org/10.1177/001872088602800407

    Article  Google Scholar 

  27. Li HO, Seo J, Kham K, Lee S (2008b) Measurement of 3D visual fatigue using event-related potential (ERP): 3D oddball paradigm. In: IEEE 2008 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video.https://doi.org/10.1109/3DTV.2008.4547846

  28. Sakurada T, Kawase T, Komatsu T, Kansaku K (2015) Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI. Clin Neurophysiol 126(10):1972–1978. https://doi.org/10.1016/j.clinph.2014.12.010

    Article  Google Scholar 

  29. Chen C, Wang J, Li K, Liu Y, Chen X (2015) Visual fatigue caused by watching 3DTV: an fMRI study. Biomed Eng Online 14(1):1. https://doi.org/10.1186/1475-925X-14-S1-S12

    Article  Google Scholar 

  30. Park S, Won MJ, Mun S, Lee EC, Whang M (2014) Does visual fatigue from 3D displays affect autonomic regulation and heart rhythm? Int J Psychophysiol 92(1):42–48. https://doi.org/10.1016/j.ijpsycho.2014.02.003

    Article  Google Scholar 

  31. Pang S, Ozawa S, Kasabov N (2005) Incremental linear discriminant analysis for classification of data streams. IEEE Trans Syst Man Cybern Part B Cybern 35(5):905–914. https://doi.org/10.1109/TSMCB.2005.847744

    Article  Google Scholar 

  32. Zhong F, Zhang J (2013) Linear discriminant analysis based on L1-norm maximization. IEEE Trans Image Process 22(8):3018–3027. https://doi.org/10.1109/TIP.2013.2253476

    Article  MathSciNet  MATH  Google Scholar 

  33. Li J, Chen C, Liu Y, Chen X (2016) Small-world brain functional network altered by watching 2D/3DTV. J Vis Commun Image R 38:433–439. https://doi.org/10.1016/j.jvcir.2016.03.023

    Article  Google Scholar 

  34. Iatsun I, Larabi MC, Fernandez-Maloigne C (2015) Investigation and modeling of visual fatigue caused by S3D content using eye-tracking. Displays 39:11–25. https://doi.org/10.1016/j.displa.2015.07.001

    Article  Google Scholar 

  35. Nalivaiko E, Davis SL, Blackmore KL, Vakulin A, Nesbitt KV (2015) Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol Behav 151:583–590. https://doi.org/10.1016/j.physbeh.2015.08.043

    Article  Google Scholar 

  36. Kim H, Lee J (2015) A study on the possibility of implementing a real-time stereoscopic 3D rendering TV system. Displays 40:24–34. https://doi.org/10.1016/j.displa.2015.05.001

    Article  Google Scholar 

  37. Vinnikov M, Allison RS, Fernandes S (2016) Impact of depth of field simulation on visual fatigue: Who are impacted? and how? Int J Hum Comput Stud 91:37–51. https://doi.org/10.1016/j.ijhcs.2016.03.001

    Article  Google Scholar 

  38. Slobounov SM, Ray W, Johnson B, Slobounov E, Newell KM (2015) Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Int J Psychophysiol 95(3):54–260. https://doi.org/10.1016/j.ijpsycho.2014.11.003

    Article  Google Scholar 

  39. Soto C, Vargas M, Uribe-Quevedo A, Jaimes N, Kapralos B (2015) AR stereoscopic 3D human eye examination app. In: 2015 IEEE International Conference on Interactive Mobile Communication Technologies and Learning (IMCL).https://doi.org/10.1109/IMCTL.2015.7359594

  40. Lambooij MT, IJsselsteijn WA, Heynderickx I (2007) Visual discomfort in stereoscopic displays: a review. In: Proceedings of the SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV, 64900I.https://doi.org/10.1117/12.705527

  41. Sayed K, Kamel M, Alhaddad M, Malibary HM, Kadah YM (2017) Characterization of phase space trajectories for brain–computer Interface. Biomed Signal Process Control 38:55–66. https://doi.org/10.1016/j.bspc.2017.05.007

    Article  Google Scholar 

  42. Meyberg S, Werkle-Bergner M, Sommer W, Dimigen O (2015) Microsaccade-related brain potentials signal the focus of visuospatial attention. NeuroImage 104:79–88. https://doi.org/10.1016/j.neuroimage.2014.09.065

    Article  Google Scholar 

  43. Jap BT, Lal S, Fischer P, Bekiaris E (2009) Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst Appl 36(2):2352–2359. https://doi.org/10.1016/j.eswa.2007.12.043

    Article  Google Scholar 

  44. Jap BT, Lal S, Fischer P (2011) Comparing combinations of EEG activity in train drivers during monotonous driving. Expert Syst Appl 38(1):996–1003. https://doi.org/10.1016/j.eswa.2010.07.109

    Article  Google Scholar 

  45. de Amorim RC, Hennig C (2015) Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inform Sci 324:126–145. https://doi.org/10.1016/j.ins.2015.06.039

    Article  MathSciNet  Google Scholar 

  46. Regan EC, Price KR (1994) The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviat Space Environ Med 65(6):527–530

    Google Scholar 

  47. Cobb SV, Nichols S, Ramsey A, Wilson JR (1999) Virtual reality-induced symptoms and effects (VRISE). Presence Teleoper Virtual Environ 8(2):169–186. https://doi.org/10.1162/105474699566152

    Article  Google Scholar 

  48. Chen YC, Duann JR, Chuang SW, Lin CL, Ko LW, Jung TP, Lin CT (2010) Spatial and temporal EEG dynamics of motion sickness. NeuroImage 49(3):2862–2870. https://doi.org/10.1016/j.neuroimage.2009.10.005

    Article  Google Scholar 

  49. Ko LW, Wei CS, Jung TP, Lin CT (2011) Estimating the level of motion sickness based on EEG spectra. In: International Conference on Foundations of Augmented Cognition.https://doi.org/10.1007/978-3-642-21852-1_21

  50. Lin CT, Tsai SF, Ko LW (2013) EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment. IEEE Trans Neural Netw Learn Syst 24(10):1689–1700. https://doi.org/10.1109/TNNLS.2013.2275003

    Article  Google Scholar 

  51. Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197(4302):493–495. https://doi.org/10.1126/science.301659

    Article  Google Scholar 

  52. Reason JT (1978) Motion sickness adaptation: a neural mismatch model. J R Soc Med 71(11):819. https://doi.org/10.1177/014107687807101109

    Article  Google Scholar 

  53. Bos JE, Bles W, Groen EL (2008) A theory on visually induced motion sickness. Displays 29(2):47–57. https://doi.org/10.1016/j.displa.2007.09.002

    Article  Google Scholar 

  54. Stanney KM, Kennedy RS, Drexler JM (1997) Cybersickness is not simulator sickness. Proc Hum Factors Ergon Soc Annu Meet 41(2):1138–1142. https://doi.org/10.1177/107118139704100292

    Article  Google Scholar 

  55. LaViola JJ (2000) A discussion of cybersickness in virtual environments. ACM SIGCHI Bull 32(1):47–56. https://doi.org/10.1145/333329.333344

    Article  Google Scholar 

  56. Choi MH, Alquzi MB, Hong M (2014) Assessment of human perceptual sensitivity to physically non-conforming motion in virtual environments. J Supercomput 69(3):1311–1323. https://doi.org/10.1007/s11227-014-1169-y

    Article  Google Scholar 

  57. Lin H, Wu FG, Cheng YY (2013) Legibility and visual fatigue affected by text direction, screen size and character size on color LCD e-reader. Displays 34(1):49–58. https://doi.org/10.1016/j.displa.2012.11.006

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to give thanks to the Ministry of Science and Technology of Taiwan for Grant MOST 107-2410-H-025-010-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiu-Sen Chiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CC., Chiang, HS. & Hsiao, MH. Effects of screen size and visual presentation on visual fatigue based on regional brain wave activity. J Supercomput 77, 4831–4851 (2021). https://doi.org/10.1007/s11227-020-03458-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03458-w

Keywords

Navigation