Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Two intercept-and-resend attacks on a bidirectional quantum secure direct communication and its improvement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure direct communication is an important branch of quantum cryptography. One of the main requirements of quantum secure direct communication is to ensure that no secret information can be stolen. Recently, a bidirectional quantum secure direct communication protocol [Quantum Information Processing 16, 147 (2017)] was proposed. It was believed that the intercept-and-resend attack and information leakage problem can be avoided via this protocol. However, in this paper, we point out that attackers can obtain useful information about the secret messages by constructing two intercept-and-resend attacks on the above protocol. Attackers can obtain Alice’s secret message exclusive OR Bob’s secret message by the first attack and both secret messages by the second attack. To resist the two constructed attacks, we design an improved bidirectional quantum secure direct communication protocol. Furthermore, we show that the designed protocol can resist the two constructed attacks and its efficiency has increased. It is interesting that the designed protocol can publish Alice’s result states, i.e., Bob’s initial states, without affecting its security. The designed protocol can prevent Alice (Bob) from obtaining Bob’s (Alice’s) secret message before Alice (Bob) sends her (his) secret message. This work can notice researchers to avoid similar security problems in constructing quantum cryptography protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

The original contributions presented in the study are included in the article, and further inquiries can be directed to the corresponding authors.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, Bangalore India (1984)

  2. Wootters, W.K., Zurek, W.H.: The no-cloning theorem. Phys. Today 62(2), 76–77 (2009)

    Article  Google Scholar 

  3. Gerry, C., Knight, P.: Quantum superpositions and schrödinger cat states in quantum optics. Am. J. Phys. 65(10), 964–974 (1997)

    Article  ADS  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Li, J., Li, N., Li, L.-L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6(1), 1–10 (2016)

    MathSciNet  Google Scholar 

  7. Yin, J., Cao, Y., Li, Y.-H., Ren, J.-G., Liao, S.-K., Zhang, L., Cai, W.-Q., Liu, W.-Y., Li, B., Dai, H.: Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119(20), 200501 (2017)

    Article  ADS  Google Scholar 

  8. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7(5), 378–381 (2013)

    Article  ADS  Google Scholar 

  9. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  10. Bera, S., Gupta, S., Majumdar, A.: Device-independent quantum key distribution using random quantum states. Quantum Inf. Process. 22(2), 109 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Liu, B., Xia, S., Xiao, D., Huang, W., Xu, B., Li, Y.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65(4), 240312 (2022)

    Article  ADS  Google Scholar 

  12. She, L.-G., Zhang, C.-M.: Reference-frame-independent quantum key distribution with modified coherent states. Quantum Inf. Process. 21(5), 161 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Nie, Y.-F., Zhang, C.-M.: Afterpulse analysis for reference-frame-independent quantum key distribution. Quantum Inf. Process. 21(9), 340 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  15. Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  16. Sun, Z., Song, L., Huang, Q., Yin, L., Long, G., Lu, J., Hanzo, L.: Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design. IEEE Trans. Commun. 68(9), 5778–5792 (2020)

    Article  Google Scholar 

  17. Liu, X., Li, Z., Luo, D., Huang, C., Ma, D., Geng, M., Wang, J., Zhang, Z., Wei, K.: Practical decoy-state quantum secure direct communication. Sci. China Phys. Mech. Astron. 64(12), 120311 (2021)

    Article  ADS  Google Scholar 

  18. Long, G.-L., Zhang, H.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66(13), 1267–1269 (2021)

    Article  Google Scholar 

  19. Zhou, L., Sheng, Y.-B., Long, G.-L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)

    Article  Google Scholar 

  20. Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19(1), 014036 (2023)

    Article  ADS  Google Scholar 

  21. Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Article  Google Scholar 

  22. Zhou, L., Sheng, Y.-B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65(5), 250311 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)

    Article  ADS  Google Scholar 

  24. Ying, J.-W., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B 31(12), 120303 (2022)

    Article  ADS  Google Scholar 

  25. Cao, Z., Wang, L., Liang, K., Chai, G., Peng, J.: Continuous-variable quantum secure direct communication based on gaussian mapping. Phys. Rev. Appl. 16(2), 024012 (2021)

    Article  ADS  Google Scholar 

  26. Zhang, H., Sun, Z., Qi, R., Yin, L., Long, G.-L., Lu, J.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11(1), 83 (2022)

    Article  ADS  Google Scholar 

  27. Wu, J., Lin, Z., Yin, L., Long, G.-L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1(4), 26 (2019)

    Article  Google Scholar 

  28. Ye, Z.-D., Pan, D., Sun, Z., Du, C.-G., Yin, L.-G., Long, G.-L.: Generic security analysis framework for quantum secure direct communication. Front. Phys. 16, 1–9 (2021)

    Article  Google Scholar 

  29. Wu, J., Long, G.-L., Hayashi, M.: Quantum secure direct communication with private dense coding using a general preshared quantum state. Phys. Rev. Appl. 17(6), 064011 (2022)

    Article  ADS  Google Scholar 

  30. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)

    Article  ADS  Google Scholar 

  31. Yen, C.-A., Horng, S.-J., Goan, H.-S., Kao, T.-W., Chou, Y.-H.: Quantum direct communication with mutual authentication. arXiv Preprint arXiv:0903.3444 (2009)

  32. Pan, D., Lin, Z., Wu, J., Zhang, H., Sun, Z., Ruan, D., Yin, L., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8(9), 1522–1531 (2020)

    Article  Google Scholar 

  33. Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10(1), 183 (2021)

    Article  ADS  Google Scholar 

  34. Liu, X., Luo, D., Lin, G., Chen, Z., Huang, C., Li, S., Zhang, C., Zhang, Z., Wei, K.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65(12), 120311 (2022)

    Article  ADS  Google Scholar 

  35. Long, G.-L., Pan, D., Sheng, Y.-B., Xue, Q., Lu, J., Hanzo, L.: An evolutionary pathway for the quantum internet relying on secure classical repeaters. IEEE Netw. 36(3), 82–88 (2022)

    Article  Google Scholar 

  36. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Tan, Y.-G., Cai, Q.-Y.: Classical correlation in quantum dialogue. Int. J. Quant. Inf. 6(02), 325–329 (2008)

    Article  Google Scholar 

  38. Gao, F., Guo, F., Wen, Q., Zhu, F.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G 51(5), 559–566 (2008)

    Article  Google Scholar 

  39. Shi, G.-F., Xi, X.-Q., Hu, M.-L., Yue, R.-H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  40. Man, Z.-X., Xia, Y.-J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(007), 1680–1682 (2006)

    Article  ADS  Google Scholar 

  41. Gao, T., Li, Y.-F., Xi, W.-Z.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893 (2005)

    Article  Google Scholar 

  42. Ye, T.-Y., Jiang, L.-Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  43. Wang, J., Zhang, Q., Tang, C.-J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 266(2), 732–737 (2006)

    Article  ADS  Google Scholar 

  44. Dong, L., Xiu, X.-M., Gao, Y.-J., Chi, F.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281(24), 6135–6138 (2008)

    Article  ADS  Google Scholar 

  45. Kao, S.-H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process. 16(5), 1–13 (2017)

    Article  MATH  Google Scholar 

  46. Pan, H.-M.: Controlled bidirectional quantum secure direct communication with six-qubit entangled states. Int. J. Theor. Phys. 60(8), 2943–2950 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, B.-X., Liang, X.-Q.: Novel controlled quantum dialogue protocols without information leakage. Int. J. Theor. Phys. 61(3), 1–17 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chang, C.-H., Luo, Y.-P., Yang, C.-W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16(6), 1–11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Deng, F.-G., Li, X.-H., Li, C.-Y., Zhou, P., Zhou, H.-Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)

    Article  ADS  MATH  Google Scholar 

  51. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bussieres, F., Sangouard, N., Afzelius, M., De Riedmatten, H., Simon, C., Tittel, W.: Prospective applications of optical quantum memories. J. Mod. Opt. 60(18), 1519–1537 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  54. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Joint Research and Development Fund of Wuyi University, Hong Kong and Macao (No. 2021WGALH16), the National Natural Science Foundations of China (Nos. 61871205 and 11874312), the Innovation Program for Quantum Science and Technology (No. 2021ZD0302900), the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012623), the Innovation Project of Department of Education of Guangdong Province of China (No. 2017KTSCX180), and the Science and Technology Project of Jiangmen City of China (No. 2021030101270004596).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfu Zou or Xin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zou, X., Wang, X. et al. Two intercept-and-resend attacks on a bidirectional quantum secure direct communication and its improvement. Quantum Inf Process 22, 346 (2023). https://doi.org/10.1007/s11128-023-04088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04088-w

Keywords

Navigation