Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In 2019, Sun et al. (Mod Phys Lett A 34:1950004, 2019) proposed two semi-quantum secure direct communication (SQSDC) protocols using Bell states. However, an eavesdropper can launch a double CNOT attack to reveal or steal the sender’s secret message, without being detected. In addition, the SQSDC protocol of Sun et al. suffers severely from information leakage problem. If these security issues are not addressed, the SQSDC protocol may fail at delivering secret messages. Thus, this study proposes an efficient and secure SQSDC protocol to circumvent these problems. The analyses results demonstrated that the proposed SQSDC protocol can effectively avoid the double CNOT attack, information leakage problem and other popular attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Tan, Y., Lu, H., Cai, Q.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)

    ADS  MathSciNet  Google Scholar 

  4. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    ADS  Google Scholar 

  5. Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 046301 (2011)

    ADS  Google Scholar 

  6. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    ADS  Google Scholar 

  7. Zou, X., Qiu, D.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states’”. Phys. Rev. A 83(4), 046302 (2011)

    ADS  Google Scholar 

  8. Maitra, A., Paul, G.: Eavesdropping in semiquantum key distribution protocol. Inf. Process. Lett. 113(12), 418–422 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Sun, Z.-W., Du, R.-G., Long, D.-Y.: Quantum key distribution with limited classical Bob. Int. J. Quantum Inf. 11(01), 1350005 (2013)

    MathSciNet  Google Scholar 

  10. Yu, K.-F., Yang, C.-W., Liao, C.-H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    ADS  Google Scholar 

  13. Yang, Y.-G., Sun, S.-J., Zhao, Q.-Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Li, Q., Chan, W.H., Zhang, S.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    ADS  Google Scholar 

  17. Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 194 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Liu, Z.-R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)

    MathSciNet  Google Scholar 

  19. Zhang, W., Qiu, D., Mateus, P.: Security of a single-state semi-quantum key distribution protocol. Quantum Inf. Process. 17(6), 135 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Tsai, C.-L., Hwang, T.: Semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 57(11), 3410–3418 (2018)

    MATH  Google Scholar 

  21. Tsai, C.-W., Yang, C.-W.: Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 58(7), 2244–2250 (2019)

    MATH  Google Scholar 

  22. Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    ADS  Google Scholar 

  25. Gheorghiu, V.: Generalized semiquantum secret-sharing schemes. Phys. Rev. A 85(5), 052309 (2012)

    ADS  Google Scholar 

  26. Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. Math. Theor. 46(4), 045304 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semiquantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    MATH  Google Scholar 

  29. Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)

    MATH  Google Scholar 

  33. Chen, B., Yang, W., Huang, L.: Cryptanalysis and improvement of the novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 32(25), 1850294 (2018)

    ADS  MathSciNet  Google Scholar 

  34. Gao, G., Wang, Y., Wang, D.: Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 32(09), 1850117 (2018)

    ADS  MathSciNet  Google Scholar 

  35. Li, Z., Li, Q., Liu, C., Peng, Y., Chan, W.H., Li, L.: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17(10), 285 (2018)

    ADS  MATH  Google Scholar 

  36. Yin, A.H., Tong, Y.: A novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 32(22), 1850256 (2018)

    ADS  MathSciNet  Google Scholar 

  37. He, Q., Yang, W., Chen, B., Huang, L.: Cryptanalysis and improvement of the novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 30, 1950045 (2019)

    MathSciNet  Google Scholar 

  38. Tsai, C.-W., Yang, C.-W., Lee, N.-Y.: Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A 34(27), 1950213 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. 57(9), 1696–1702 (2014)

    Google Scholar 

  40. Luo, Y.-P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Zhang, M.-H., Li, H.-F., Xia, Z.-Q., Feng, X.-Y., Peng, J.-Y.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    ADS  MATH  Google Scholar 

  42. Gu, J., Lin, P.-H., Hwang, T.: Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’. Quantum Inf. Process. 17(7), 182 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Yan, L., Sun, Y., Chang, Y., Zhang, S., Wan, G., Sheng, Z.: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf. Process. 17(11), 315 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Sun, Y., Yan, L., Chang, Y., Zhang, S., Shao, T., Zhang, Y.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(01), 1950004 (2019)

    ADS  Google Scholar 

  45. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(05), 1850047 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Nie, Y.Y., Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  48. Deng, F.-G., Long, G., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  49. Deng, F.-G., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    ADS  Google Scholar 

  50. Wu, F., Yang, G., Wang, H., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. 60(12), 120313 (2017)

    Google Scholar 

  51. Chen, S.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Three-step three-party quantum secure direct communication. Sci. China Phys. 61(9), 90312 (2018)

    Google Scholar 

  52. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  53. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Google Scholar 

  54. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    ADS  Google Scholar 

  55. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    ADS  Google Scholar 

  56. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    ADS  MATH  Google Scholar 

  57. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

  59. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “Quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers and the editor for their very valuable comments, which greatly enhanced the clarity of this paper. This research was partially supported by the Ministry of Science and Technology, Taiwan, R.O.C., under the Contract No. MOST 106-2218-E-039-002-MY3, and also was partially supported by China Medical University, Taiwan, under the Contract No. CMU108-MF-101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CW. Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack. Quantum Inf Process 19, 50 (2020). https://doi.org/10.1007/s11128-019-2550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2550-9

Keywords

Navigation