Abstract
Quantum machine learning recently gained prominence due to the computational ability of quantum computers in solving machine learning problems that are intractable on a classical computer. However, achieving a quantum advantage on present-day quantum computers remains an open challenge. In this work, we primarily focus on solving machine learning problems using a hybrid model based on both quantum and classical computers together for the classification task. We propose the quantum multi-class classifier (QMCC) as a variational circuit with a hybrid classical-quantum approach using quantum mechanical properties such as superposition and entanglement. A unitary operation on a single qubit for the state preparation is designed and also demonstrated using a real quantum computer on the IBMQX platform. The entire variational circuit for the classification task is implemented on a quantum simulator. We performed our quantum simulations on three benchmark datasets: Iris dataset, Banknote Authentication (BNA) dataset, and Wireless Indoor Localization (WIL) dataset for machine learning algorithms. Our simulation results show that the proposed QMCC model classified Iris dataset with an accuracy of 92.10%, BNA dataset with an accuracy of 89.50%, and WIL dataset with an accuracy of 91.73%. The proposed model can also be extended to multiple class classifiers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zidan, M., Abdel-Aty, A.H., Nguyen, D.M., Mohamed, A.S., Al-Sbou, Y., Eleuch, H., Abdel-Aty, M.: A quantum algorithm based on entanglement measure for classifying boolean multivariate function into novel hidden classes. Res. Phys. 15, 102549 (2019)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)
Mooij, J., Orlando, T., Levitov, L., Tian, L., Van der Wal, C.H., Lloyd, S.: Josephson persistent-current qubit. Science 285(5430), 1036–1039 (1999)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)
Chuang, I.L., Vandersypen, L.M., Zhou, X., Leung, D.W., Lloyd, S.: Experimental realization of a quantum algorithm. Nature 393(6681), 143 (1998)
Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393(6683), 344 (1998)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)
Zidan, M., Abdel-Aty, A., Younes, A., Zanaty, E., El-khayat, I., Abdel-Aty, M.: A novel algorithm based on entanglement measurement for improving speed of quantum algorithms. Appl. Math. Inf. Sci 12(1), 265–269 (2018)
Abdel-Aty, A.H., Kadry, H., Zidan, M., Al-Sbou, Y., Zanaty, E., Abdel-Aty, M.: A quantum classification algorithm for classification incomplete patterns based on entanglement measure. J. Intell. Fuzzy Syst. (Preprint) pp. 1–8, (2020)
Zidan, M., Abdel-Aty, A.H., El-shafei, M., Feraig, M., Al-Sbou, Y., Eleuch, H., Abdel-Aty, M.: Quantum classification algorithm based on competitive learning neural network and entanglement measure. Appl. Sci. 9(7), 1277 (2019)
Zidan, M., Sagheer, A., Metwally, N.: An autonomous competitive learning algorithm using quantum hamming neural networks. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2015)
Sagheer, A., Zidan, M., Abdelsamea, M.M.: A novel autonomous perceptron model for pattern classification applications. Entropy 21(8), 763 (2019)
Zidan, M., Abdel-Aty, A.H., El-Sadek, A., Zanaty, E., Abdel-Aty, M.: Low-cost autonomous perceptron neural network inspired by quantum computation. In: AIP Conference Proceedings, vol. 1905, p. 020005. AIP Publishing LLC (2017)
Abubakar, M.Y., Jung, L.T., Zakaria, N., Younes, A., Abdel-Aty, A.H.: Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quant. Inf. Process. 16(6), 160 (2017)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)
Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)
Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing. PloS ONE 13(12), e0208561 (2018)
Liu, D., Ran, S.J., Wittek, P., Peng, C., García, R.B., Su, G., Lewenstein, M.: Machine learning by unitary tensor network of hierarchical tree structure. N. J. Phys. 21(7), 073059 (2019)
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209 (2019)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
IBM Quantum Experience (2016). https://quantum-computing.ibm.com. [Online; accessed 28. Aug. 2020]
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Killoran, N.: Pennylane: Automatic differentiation of hybrid quantum-classical computations. (2018). arXiv preprint arXiv:1811.04968
Michie, D., Spiegelhalter, D.J., Taylor, C., et al.: Machine learning. Neural Stat. Classif. 13(1994), 1–298 (1994)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)
Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press, London (2014)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning (2013)
Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016)
Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhys. Lett.) 119(6), 60002 (2017)
Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, vol. 17. Springer, Berlin (2018)
Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. NPJ Quant. Inf. 4(1), 65 (2018)
Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D.: An artificial neuron implemented on an actual quantum processor. NPJ Quant. Inf. 5(1), 26 (2019)
Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019). https://doi.org/10.1103/PhysRevLett.122.040504
Mengoni, R., Di Pierro, A.: Kernel methods in quantum machine learning. Quant. Mach. Intell. 1(3), 65–71 (2019). https://doi.org/10.1007/s42484-019-00007-4
Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)
Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum boltzmann machine. Phys. Rev. X 8(2), 021050 (2018)
Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018)
Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2209), 20170551 (2018)
Von Lilienfeld, O.A.: Quantum machine learning in chemical compound space. Angew. Chem. Int. Ed. 57(16), 4164–4169 (2018)
McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. N. J. Phys. 18(2), 023023 (2016)
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)
Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)
Draper, T., Kutin, S.: Qpic: Quantum circuit diagrams in latex (2016). https://github.com/qpic/qpic
Stoudenmire, E., Schwab, D.J.: Supervised learning with tensor networks. In: Advances in Neural Information Processing Systems, pp. 4799–4807 (2016)
Bridle, J.S.: Probabilistic Interpretation of Feedforward Classification Network outputs, with relationships to statistical pattern recognition. Springer, Berlin (1990)
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), 032331 (2019)
IBM Research, Q.c.: Qiskit (2017). https://github.com/Qiskit. [Online; accessed 28. Aug. 2020]
PennyLaneAI: pennylane-qiskit (2018). https://github.com/PennyLaneAI/pennylane-qiskit. [Online; accessed 28. Aug. 2020]
UCI Machine Learning Repository: Iris Data Set (1988). https://archive.ics.uci.edu/ml/datasets/Iris
UCI Machine Learning Repository: Banknote Authentication Data Set (2013). https://archive.ics.uci.edu/ml/datasets/banknote+authentication
UCI Machine Learning Repository: Wireless Indoor Localization Data Set (2017). https://archive.ics.uci.edu/ml/datasets/Wireless+Indoor+Localization
IBM Q 16 Melbourne. ibmq-device-information (2019). https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/V1/version_log.md
Schuld, M., Petruccione, F.: Information Encoding, pp. 139–171. Springer International Publishing, Berlin (2018). https://doi.org/10.1007/978-3-319-96424-9_5
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Prechelt, L.: Early Stopping-but When? In: Neural Networks: Tricks of the Trade, pp. 55–69. Springer (1998)
Schuld, M., Petruccione, F.: Quantum Information, pp. 75–125. Springer International Publishing, Berlin (2018). https://doi.org/10.1007/978-3-319-96424-9_3
Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5(6), 467–473 (2005)
Acknowledgements
We thank Maria Schuld and PennyLane team of Xanadu Inc., Kaushik Mukherjee of Indian Institute of Space Science and Technology and Indranil Ghosh from Jadavpur University for the useful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chalumuri, A., Kune, R. & Manoj, B.S. A hybrid classical-quantum approach for multi-class classification. Quantum Inf Process 20, 119 (2021). https://doi.org/10.1007/s11128-021-03029-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03029-9