Abstract
The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R2 with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r2 = 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r2 = 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r2 = 0.72 and RMSE = 0.82) and Support vector regression, SVR (r2 = 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa.
Similar content being viewed by others
Data availability
For the moment, the data from the project are not available due to restrictions.
References
Abady, S., Shimelis, H., Janila, P., & Mashilo, J. (2019). Groundnut (Arachis hypogaea L.) improvement in sub-Saharan Africa: A review. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 69(6), 528–545. https://doi.org/10.1080/09064710.2019.1601252
Adeluyi, O., Harris, A., Verrelst, J., Foster, T., & Clay, G. D. (2021). Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression. International Journal of Applied Earth Observation and Geoinformation, 102, 102454. https://doi.org/10.1016/j.jag.2021.102454
African Institute of Corporate Citizenship. 2016. Malawi Groundnut Outlook. TAURUS House Executive Offices City Centre, Along Convention Drive P/Bag 382 Lilongwe 3 Malawi.
Ajeigbe H.A., Waliyar F., Echekwu C.A, Ayuba K., Motagi B.N., Eniayeju D. and Inuwa A. (2015). A Farmer's Guide to Groundnut Production in Nigeria. Patancheru 502 324, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics. 36 pp.
Alemayehu C, Berhanu A, Mulugeta T, Abdi M, Tameru A, Helge S. (2014). Opportunities and constraints of groundnut production in selected drylands of Ethiopia. DCG Report No.74. Drylands Coordination Group.
Arya, S. S., Salve, A. R., & Chauhan, S. (2016). Peanuts as functional food: A review. Journal of Food Science and Technology, 53(1), 31–41. https://doi.org/10.1007/s13197-015-2007-9
Barclay, H. J. (1998). Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. Tree Physiology, 18(3), 185–193. https://doi.org/10.1093/treephys/18.3.185
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/BF00058655
Breiman, L. (2001). No title found. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees (1st ed.). London: Routledge.
Brown, L. A., Meier, C., Morris, H., Pastor-Guzman, J., Bai, G., Lerebourg, C., Gobron, N., Lanconelli, C., Clerici, M., & Dash, J. (2020). Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data. Remote Sensing of Environment, 247, 111935. https://doi.org/10.1016/j.rse.2020.111935
Caicedo, J. P. R., Verrelst, J., Munoz-Mari, J., Moreno, J., & Camps-Valls, G. (2014). Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1249–1259. https://doi.org/10.1109/JSTARS.2014.2298752
Campos-Taberner, M., García-Haro, F. J., Camps-Valls, G., Grau-Muedra, G., Nutini, F., Crema, A., & Boschetti, M. (2016). Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sensing of Environment, 187, 102–118. https://doi.org/10.1016/j.rse.2016.10.009
Casa, R., Varella, H., Buis, S., Guérif, M., De Solan, B., & Baret, F. (2012). Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach. European Journal of Agronomy, 37(1), 1–10. https://doi.org/10.1016/j.eja.2011.09.004
Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., & Plummer, S. (1997). Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research: Atmospheres, 102(D24), 29429–29443. https://doi.org/10.1029/97JD01107
Chrysafis, I., Korakis, G., Kyriazopoulos, A. P., & Mallinis, G. (2020). Retrieval of leaf area index using sentinel-2 imagery in a mixed mediterranean forest area. ISPRS International Journal of Geo-Information, 9(11), 622. https://doi.org/10.3390/ijgi9110622
Clevers, J. G. P. W., & Gitelson, A. A. (2013). Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. International Journal of Applied Earth Observation and Geoinformation, 23, 344–351. https://doi.org/10.1016/j.jag.2012.10.008
Cohrs, C. W., Cook, R. L., Gray, J. M., & Albaugh, T. J. (2020). Sentinel-2 leaf area index estimation for pine plantations in the Southeastern United States. Remote Sensing, 12(9), 1406. https://doi.org/10.3390/rs12091406
Debele, S., & Amare, A. (2015). Integrated management of Cercospora leaf spots of groundnut (Arachis hypogaea L.) through host resistance and fungicides in Eastern Ethiopia. Afr J Plant Sci., 9, 82–89. https://doi.org/10.5897/AJPS2014.1260
Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors, 11(7), 7063–7081. https://doi.org/10.3390/s110707063
Desmae, H., & Sones, K. (2017). Groundnut cropping guide. Africa soil health Consortium. CAB International.
Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J. M., Walters, D., Jiao, X., Geng, X., & Shi, Y. (2019). Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of Environment, 222, 133–143. https://doi.org/10.1016/j.rse.2018.12.032
Duchemin, B., Maisongrande, P., Boulet, G., & Benhadj, I. (2008). A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environmental Modelling & Software, 23(7), 876–892. https://doi.org/10.1016/j.envsoft.2007.10.003
Durbha, S. S., King, R. L., & Younan, N. H. (2007). Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sensing of Environment, 107(1–2), 348–361. https://doi.org/10.1016/j.rse.2006.09.031
Fang, H., Li, W., Wei, S., & Jiang, C. (2014). Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agricultural and Forest Meteorology, 198–199, 126–141. https://doi.org/10.1016/j.agrformet.2014.08.005
Fassnacht, K. S., Gower, S. T., MacKenzie, M. D., Nordheim, E. V., & Lillesand, T. M. (1997). Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper. Remote Sensing of Environment, 61(2), 229–245. https://doi.org/10.1016/S0034-4257(97)00005-9
Faye, B., Webber, H., Gaiser, T., Diop, M., Owusu-Sekyere, J. D., & Naab, J. B. (2016). Effects of fertilization rate and water availability on peanut growth and yield in Senegal (West Africa). J Sustain Develop., 9, 111–131.
Forkuor, G., Dimobe, K., Serme, I., & Tondoh, J. E. (2018). Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & Remote Sensing, 55(3), 331–354. https://doi.org/10.1080/15481603.2017.1370169
Gaikpa, D. S., Akromah, R., Asibuo, J. W., Appiah-Kubi, Z., & Nyadanu, D. (2015). Evaluation of yield and yield components of groundnut genotypes under Cercospora leaf spots disease pressure. International Journal of Agronomy and Agricultural Research, 3, 66–75.
Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143(1), 105–117. https://doi.org/10.1046/j.1469-8137.1999.00424.x
Gan, R., Zhang, Y., Shi, H., Yang, Y., Eamus, D., Cheng, L., Chiew, F. H. S., & Yu, Q. (2018). Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems: Coupled estimates of ET and GPP. Ecohydrology, 11(5), e1974. https://doi.org/10.1002/eco.1974
Gilardelli, C., Stella, T., Confalonieri, R., Ranghetti, L., Campos-Taberner, M., García-Haro, F. J., & Boschetti, M. (2019). Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data. European Journal of Agronomy, 103, 108–116. https://doi.org/10.1016/j.eja.2018.12.003
Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173. https://doi.org/10.1078/0176-1617-01176
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7
Gitelson, A., & Merzlyak, M. N. (1994). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143(3), 286–292. https://doi.org/10.1016/S0176-1617(11)81633-0
Haboudane, D. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013
Houborg, R., & McCabe, M. F. (2018). A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 173–188. https://doi.org/10.1016/j.isprsjprs.2017.10.004
Ilniyaz, O., Kurban, A., & Du, Q. (2022). Leaf area index estimation of pergola-trained vineyards in arid regions based on UAV RGB and multispectral data using machine learning methods. Remote Sensing, 14(2), 415. https://doi.org/10.3390/rs14020415
Jiang, Z., Huete, A., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006
Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666. https://doi.org/10.2307/1936256
Kang, Y., & Özdoğan, M. (2019). Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sensing of Environment, 228, 144–163. https://doi.org/10.1016/j.rse.2019.04.005
Kanniah, K. D., Kang, C. S., Sharma, S., & Amir, A. A. (2021). Remote sensing to study Mangrove fragmentation and its impacts on leaf area index and gross primary productivity in the South of Peninsular Malaysia. Remote Sensing, 13(8), 1427. https://doi.org/10.3390/rs13081427
Kganyago, M., Mhangara, P., & Adjorlolo, C. (2021). Estimating crop biophysical parameters using machine learning algorithms and sentinel-2 imagery. Remote Sensing, 13(21), 4314. https://doi.org/10.3390/rs13214314
Kiala, Z., Odindi, J., Mutanga, O., & Peerbhay, K. (2016). Comparison of partial least squares and support vector regressions for predicting leaf area index on a tropical grassland using hyperspectral data. Journal of Applied Remote Sensing, 10(3), 036015. https://doi.org/10.1117/1.JRS.10.036015
Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235–248. https://doi.org/10.1016/j.jag.2014.08.002
Lei, G., Zeng, W., Jiang, Y., Ao, C., Wu, J., & Huang, J. (2021). Sensitivity analysis of the SWAP (Soil-Water-Atmosphere-Plant) model under different nitrogen applications and root distributions in saline soils. Pedosphere, 31(5), 807–821. https://doi.org/10.1016/S1002-0160(21)60038-3
Liu, S., Zeng, W., Wu, L., Lei, G., Chen, H., Gaiser, T., & Srivastava, A. K. (2021). Simulating the leaf area index of rice from multispectral images. Remote Sensing, 13(18), 3663. https://doi.org/10.3390/rs13183663
Maimaitijiang, M., Sagan, V., Sidike, P., Daloye, A. M., Erkbol, H., & Fritschi, F. B. (2020). Crop monitoring using satellite/UAV data fusion and machine learning. Remote Sensing, 12(9), 1357. https://doi.org/10.3390/rs12091357
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., & Berger, M. (2012). Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120, 91–101. https://doi.org/10.1016/j.rse.2011.09.026
Martimort, P., Arino, O., Berger, M., Biasutti, R., Carnicero, B., Del Bello, U., Fernandez, V., Gascon, F., Greco, B., Silvestrin, P., Spoto, F., & Sy, O. (2007). Sentinel-2 optical high resolution mission for GMES operational services. IEEE International Geoscience and Remote Sensing Symposium, 2007, 2677–2680. https://doi.org/10.1109/IGARSS.2007.4423394
Mastewal, A., Sakhuja, P. K., & Mashilla, D. (2017). Evaluation of released and local groundnut varieties against groundnut rust (Puccinia arachidis) at Babile, Eastern Ethiopia. Open Access Journal of Agricultural Research, 2, 000123.
Metternicht, G. (2003). Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855–2877. https://doi.org/10.1080/01431160210163074
Miura, T., Huete, A. R., Yoshioka, H., & Holben, B. N. (2001). An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction. Remote Sensing of Environment, 78(3), 284–298. https://doi.org/10.1016/S0034-4257(01)00223-1
Nigerian Export Promotion Council, NEPC (2021). Ground-nut-profile. Retrieved 27 July, 2020, from https://nepc.gov.ng/blog/market-report/ground-nut-profile/.
Omer, G., Mutanga, O., Abdel-Rahman, E., & Adam, E. (2016). Empirical prediction of leaf area index (LAI) of Endangered tree species in intact and fragmented indigenous forests ecosystems using WorldView-2 data and two robust machine learning algorithms. Remote Sensing, 8(4), 324. https://doi.org/10.3390/rs8040324
Pasolli, L., Blanzieri, E., & Melgani, F. (2008). Estimating Biophysical Parameters from Remotely Sensed Imagery with Gaussian Processes. IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, II-851-II–854. https://doi.org/10.1109/IGARSS.2008.4779128
Pearson, K. L. I. I. I. (2010). On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine Journal of Science, 2, 559–572.
Peng, X., Han, W., Ao, J., & Wang, Y. (2021). Assimilation of LAI derived from UAV multispectral data into the SAFY model to estimate maize yield. Remote Sensing, 13(6), 1094. https://doi.org/10.3390/rs13061094
Perich, G., Aasen, H., Verrelst, J., Argento, F., Walter, A., & Liebisch, F. (2021). Crop nitrogen retrieval methods for simulated sentinel-2 data using in-field spectrometer data. Remote Sensing, 13(12), 2404. https://doi.org/10.3390/rs13122404
Peñuelas, J., Isla, R., Filella, I., & Araus, J. L. (1997). Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Science, 37(1), 198–202. https://doi.org/10.2135/cropsci1997.0011183X003700010033x
Pichon, L., Taylor, J., & Tisseyre, B. (2020). Using smartphone leaf area index data acquired in a collaborative context within vineyards in southern France. OENO One, 54(1), 123–130. https://doi.org/10.20870/oeno-one.2020.54.1.2481
Pinty, B., Lavergne, T., Widlowski, J.-L., Gobron, N., & Verstraete, M. M. (2009). On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption. Remote Sensing of Environment, 113(1), 10–23. https://doi.org/10.1016/j.rse.2008.08.017
Price, J. (1995). Leaf area index estimation from visible and near-infrared reflectance data. Remote Sensing of Environment, 52(1), 55–65. https://doi.org/10.1016/0034-4257(94)00111-Y
Pôças, I., Gonçalves, J., Costa, P. M., Gonçalves, I., Pereira, L. S., & Cunha, M. (2017). Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. International Journal of Applied Earth Observation and Geoinformation, 58, 177–190. https://doi.org/10.1016/j.jag.2017.02.013
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
Qi, H., Zhu, B., Wu, Z., Liang, Y., Li, J., Wang, L., Chen, T., Lan, Y., & Zhang, L. (2020). Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images. Sensors, 20(23), 6732. https://doi.org/10.3390/s20236732
Rasmussen, C. E. (2004). Gaussian Processes in Machine Learning. In O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Advanced Lectures on Machine Learning (Vol. 3176, pp. 63–71). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-28650-9_4
Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and Machine Learning Series; MIT Press: Cambridge, MA, USA, 2006; ISBN 978–0–262–18253–9.
Reisi Gahrouei, O., McNairn, H., Hosseini, M., & Homayouni, S. (2020). Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches. Canadian Journal of Remote Sensing, 46(1), 84–99. https://doi.org/10.1080/07038992.2020.1740584
Richter, K., Atzberger, C., Hank, T. B., & Mauser, W. (2012). Derivation of biophysical variables from Earth observation data: Validation and statistical measures. Journal of Applied Remote Sensing, 6(1), 063557–063561. https://doi.org/10.1117/1.JRS.6.063557
Rivera, J., Verrelst, J., Delegido, J., Veroustraete, F., & Moreno, J. (2014). On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sensing, 6(6), 4927–4951. https://doi.org/10.3390/rs6064927
Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7
Roy, D., Li, Z., & Zhang, H. (2017). Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects. Remote Sensing, 9(12), 1325. https://doi.org/10.3390/rs9121325
Sarkar, S., Cazenave, A.-B., Oakes, J., McCall, D., Thomason, W., Abbott, L., & Balota, M. (2021). Aerial high-throughput phenotyping of peanut leaf area index and lateral growth. Scientific Reports, 11(1), 21661. https://doi.org/10.1038/s41598-021-00936-w
Snee, R. D. (1977). Validation of regression models: Methods and examples. Technometrics, 19(4), 415–428. https://doi.org/10.1080/00401706.1977.10489581
Song, C. (2013). Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography: Earth and Environment, 37(1), 98–113. https://doi.org/10.1177/0309133312471367
Sun, Y., Qin, Q., Ren, H., Zhang, T., & Chen, S. (2020). Red-Edge Band Vegetation Indices for Leaf Area Index estimation from sentinel-2/MSI imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 826–840. https://doi.org/10.1109/TGRS.2019.2940826
Suykens, J. A. K., & Vandewalle, J. (1999). No title found. Neural Processing Letters, 9(3), 293–300. https://doi.org/10.1023/A:1018628609742
Svendsen, D. H., Morales-Álvarez, P., Ruescas, A. B., Molina, R., & Camps-Valls, G. (2020). Deep Gaussian processes for biogeophysical parameter retrieval and model inversion. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 68–81. https://doi.org/10.1016/j.isprsjprs.2020.04.014
Syed, F., Arif, S., Ahmed, I., & Khalid, N. (2021). Groundnut (Peanut) (Arachis hypogaea). In B. Tanwar & A. Goyal (Eds.), Oilseeds: Health attributes and food applications (pp. 93–122). Singapore: Springer.
Tao, H., Feng, H., Xu, L., Miao, M., Long, H., Yue, J., Li, Z., Yang, G., Yang, X., & Fan, L. (2020). Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data. Sensors, 20(5), 1296. https://doi.org/10.3390/s20051296
Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., & Briggs, J. M. (1999). Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across three temperate zone sites. Remote Sensing of Environment, 70(1), 52–68. https://doi.org/10.1016/S0034-4257(99)00057-7
Usman, I., Taiwo, A. B., Haratu, D., Abubakar, M. A., Usman, I., Taiwo, A. B., Haratu, D., & Abubakar, M. A. (2013). SOCIO-ECONOMIC FACTORS AFFECTING GROUNDNUT PRODUCTION IN SABONGARI LOCAL GOVERNMENT OF KADUNA STATE, NIGERIA. https://doi.org/10.22004/AG.ECON.156141
Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., & Moreno, J. (2012a). Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1832–1843. https://doi.org/10.1109/TGRS.2011.2168962
Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., & Moreno, J. (2012b). Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sensing of Environment, 118, 127–139. https://doi.org/10.1016/j.rse.2011.11.002
Verrelst, J., Alonso, L., Rivera Caicedo, J. P., Moreno, J., & Camps-Valls, G. (2013). Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 867–874. https://doi.org/10.1109/JSTARS.2012.2222356
Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G. P. W., & Moreno, J. (2015a). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273–290. https://doi.org/10.1016/j.isprsjprs.2015.05.005
Verrelst, J., Rivera, J. P., Veroustraete, F., Muñoz-Marí, J., Clevers, J. G. P. W., Camps-Valls, G., & Moreno, J. (2015b). Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 260–272. https://doi.org/10.1016/j.isprsjprs.2015.04.013
Verrelst, J., Rivera, J. P., Gitelson, A., Delegido, J., Moreno, J., & Camps-Valls, G. (2016). Spectral band selection for vegetation properties retrieval using Gaussian processes regression. International Journal of Applied Earth Observation and Geoinformation, 52, 554–567. https://doi.org/10.1016/j.jag.2016.07.016
Verrelst, J., Schaepman, M. E., Koetz, B., & Kneubühler, M. (2008). Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment, 112(5), 2341–2353. https://doi.org/10.1016/j.rse.2007.11.001
Vincini, M., Amaducci, S., & Frazzi, E. (2014). Empirical estimation of leaf chlorophyll density in winter wheat canopies using sentinel-2 spectral resolution. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3220–3235. https://doi.org/10.1109/TGRS.2013.2271813
Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468–3478. https://doi.org/10.1016/j.rse.2011.08.010
Wang, L., Chang, Q., Yang, J., Zhang, X., & Li, F. (2018). Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments. PLoS ONE, 13(12), e0207624. https://doi.org/10.1371/journal.pone.0207624
Wang, F., Huang, J., Tang, Y., & Wang, X. (2007). New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Science, 14(3), 195–203. https://doi.org/10.1016/S1672-6308(07)60027-4
Wang, J., Xiao, X., Bajgain, R., Starks, P., Steiner, J., Doughty, R. B., & Chang, Q. (2019). Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 189–201. https://doi.org/10.1016/j.isprsjprs.2019.06.007
Xiao, Z., Liang, S., Wang, T., & Jiang, B. (2016). Retrieval of Leaf Area Index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) from VIIRS time-series data. Remote Sensing, 8(4), 351. https://doi.org/10.3390/rs8040351
Xie, Q., Dash, J., Huete, A., Jiang, A., Yin, G., Ding, Y., Peng, D., Hall, C. C., Brown, L., Shi, Y., Ye, H., Dong, Y., & Huang, W. (2019). Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 80, 187–195. https://doi.org/10.1016/j.jag.2019.04.019
Xie, Q., Huang, W., Dash, J., Song, X., Huang, L., Zhao, J., & Wang, R. (2015). Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. Advances in Space Research, 56(11), 2365–2373. https://doi.org/10.1016/j.asr.2015.09.022
Zeng, W., Xu, C., Wu, J., & Huang, J. (2016). Sunflower seed yield estimation under the interaction of soil salinity and nitrogen application. Field Crops Research, 198, 1–15. https://doi.org/10.1016/j.fcr.2016.08.007
Zhao, J., Li, J., Liu, Q., & Yang, L. (2012). A PRELIMINARY STUDY ON MECHANISM OF LAI INVERSION SATURATION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B1, 77–81. https://doi.org/10.5194/isprsarchives-XXXIX-B1-77-2012
Zheng, G., & Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) using remote sensing: Theories. Methods and sensors. Sensors, 9(4), 2719–2745. https://doi.org/10.3390/s90402719
Zhu, J., Zeng, W., Ma, T., Lei, G., Zha, Y., Fang, Y., Wu, J., & Huang, J. (2018). Testing and improving the WOFOST model for sunflower simulation on saline soils of inner Mongolia, China. Agronomy, 8(9), 172. https://doi.org/10.3390/agronomy8090172
Acknowledgements
The authors acknowledge the School of Agriculture, Food and Wine, the University of Adelaide for the design and development of the VitiCanopy App deployed freely in this project.
Funding
This research received no external funding.
Author information
Authors and Affiliations
Contributions
MCE: conceptualization, data curation, methodology, formal analysis, software, validation, visualization, writing—original draft. angela kross: writing—review and editing. OA: conceptualization, methodology, writing—review & editing. CAO: conceptualization, formal analysis, software, validation, visualization, writing—original draft. JV: methodology, software, validation, visualization, writing—review & editing.
Ethics declarations
Conflict of interest
No potential conflict of interest was reported by the author(s).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ekwe, M.C., Adeluyi, O., Verrelst, J. et al. Estimating rainfed groundnut’s leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models. Precision Agric 25, 1404–1428 (2024). https://doi.org/10.1007/s11119-024-10117-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-024-10117-0