Abstract
In this paper, we develop a second-order backward differentiation formula (BDF) numerical scheme for the Ericksen-Leslie model of nematic liquid crystal. It combines a convex splitting method to discretize the penalty function. In the meanwhile, a pressure-correction strategy is used to decouple the pressure from that of the velocity. We prove that the proposed scheme is uniquely solvable and unconditionally stable in energy. Some numerical simulations are also performed to demonstrate the efficiency and accuracy of the proposed scheme.
Similar content being viewed by others
Data Availability
The data sets generated during and analyzed during the current study are available from the corresponding author on reasonable request.
References
Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9(1), 371–378 (1962)
Xin, Z., Zhang, X.: From the Landau-de Gennes theory to the Ericksen-Leslie theory in dimension two. arXiv:2105.10652 (2021)
Vitoriano, C.: Generalization of the Ericksen-Leslie theory. European Phys. J. E 40(4), 48 (2017)
Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46(4), 1704–1731 (2008)
Fang-Hua, L.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. (1989)
Cabrales, R. C., Guillén-González, F., Gutiérrez-Santacreu, J. V.: A time-splitting finite-element stable approximation for the Ericksen-Leslie equations. SIAM J. Sci. Comput. 37(2), B261–B282 (2015)
Chen, R., Bao, W., Zhang, H.: The kinematic effects of the defects in liquid crystal dynamics. Commun. Comput. Phys. 20(1), 234–249 (2016)
Liu, C., Walkington, N.J.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 725–741 (2000)
Liu, C., Walkington, N.J.: Mixed methods for the approximation of liquid crystal flows. ESAIM: Math. Modell. Numerical Anal. 36(2), 205–222 (2002)
Lin, F. H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)
Lin, F. H., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin. Dynamic. Syst. 2(1), 1 (1996)
Lin, F. H., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197(1), 297–336 (2010)
Lin, F. H., Wang, C.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chinese Annal. Math., Series B 31(6), 921–938 (2010)
Hong, M. C.: Global existence of solutions of the simplified Ericksen-Leslie system in dimension two. Calc. Var. 40(1), 15–36 (2011)
Huang, X.: A representation formula of incompressible liquid crystal flow and its applications. Nonlinearity 30(5), 1911 (2017)
Mika, K.: The Ising model without temperature-a possible explanation for the critical energy of the Onsager solution. Phys. A: Stat. Mech. Appl. 369 (2), 577–588 (2006)
Onsager, M.G., Helfrich, J., Perugini, D.L., Chmiel, W.G., Weber, R., Miller, P.J.: Energy management and storage system. US, US8626403 B2 (2014)
Wu, H., Xu, X., Liu, C.: On the general ericksen-leslie system: parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208 (1), 59–107 (2013)
Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)
Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dynam. Syst.-Series A 28(4), 1669–1691 (2010)
Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)
Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)
Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT Numer. Math. 45(2), 307–328 (2005)
Du, Q., Zhu, W.: Stability analysis and application of the exponential time differencing schemes. J. Comput. Math.:200–209 (2004)
Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)
Jiang, M., Zhang, Z., Zhao, J.: Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J. Comput. Phy.:110954 (2022)
Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished article:6 (1998)
Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS online proceedings library (OPL):529 (1998)
Cheng, K., Wang, C., Wise, S. M.: An energy stable finite difference scheme for the Ericksen-Leslie system with penalty function and its optimal rate convergence analysis. March:23 (2021)
Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38(5), A3264–A3290 (2016)
Botti, L., Di Pietro, D. A.: A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J comput. Phys. 230(3), 572–585 (2011)
Zhang, X., Ni, S., He, G.: A pressure-correction method and its applications on an unstructured Chimera grid. Comput. Fluids 37(8), 993–1010 (2008)
Adams, R.A., Fournier, J.J.: Sobolev spaces. Elsevier (2003)
Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.V.: Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J. Comput. Phys. 230(4), 1686–1706 (2011)
Hecht, F., Pironneau, O., Ohtsuka, K.: FreeFEM++. http://www.freefem.org/ff++/ (2010)
Climent Ezquerra, M.B., Guillén González, F.M., Rojas Medar, M.A.: (2006). Reproductivity For a nematic liquid crystal model. Zeitschrift für angewandte Mathematik und Physik ZAMP 57(6), 984–998 (2006)
Guillén-González, F.M., Gutiérrez-Santacreu, J.V.: A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model. ESAIM: Math. Model. Numerical Anal. 47(5), 1433–1464 (2013)
Funding
This work was supported by the Research Project Supported by Shanxi Scholarship Council of China (No.2021-029) and International Cooperation Base and platform project of Shanxi Province (No.202104041101019). Shanxi Province Natural Science Foundation (No.202203021211129).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Miao, N., Wang, D., Zhang, H. et al. A second-order BDF convex splitting numerical scheme for the Ericksen-Leslie equation. Numer Algor 94, 293–314 (2023). https://doi.org/10.1007/s11075-023-01501-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-023-01501-4