Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A second-order BDF convex splitting numerical scheme for the Ericksen-Leslie equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we develop a second-order backward differentiation formula (BDF) numerical scheme for the Ericksen-Leslie model of nematic liquid crystal. It combines a convex splitting method to discretize the penalty function. In the meanwhile, a pressure-correction strategy is used to decouple the pressure from that of the velocity. We prove that the proposed scheme is uniquely solvable and unconditionally stable in energy. Some numerical simulations are also performed to demonstrate the efficiency and accuracy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data sets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9(1), 371–378 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Xin, Z., Zhang, X.: From the Landau-de Gennes theory to the Ericksen-Leslie theory in dimension two. arXiv:2105.10652 (2021)

  3. Vitoriano, C.: Generalization of the Ericksen-Leslie theory. European Phys. J. E 40(4), 48 (2017)

    Article  Google Scholar 

  4. Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46(4), 1704–1731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang-Hua, L.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. (1989)

  6. Cabrales, R. C., Guillén-González, F., Gutiérrez-Santacreu, J. V.: A time-splitting finite-element stable approximation for the Ericksen-Leslie equations. SIAM J. Sci. Comput. 37(2), B261–B282 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, R., Bao, W., Zhang, H.: The kinematic effects of the defects in liquid crystal dynamics. Commun. Comput. Phys. 20(1), 234–249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, C., Walkington, N.J.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 725–741 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, C., Walkington, N.J.: Mixed methods for the approximation of liquid crystal flows. ESAIM: Math. Modell. Numerical Anal. 36(2), 205–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, F. H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, F. H., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin. Dynamic. Syst. 2(1), 1 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, F. H., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197(1), 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, F. H., Wang, C.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chinese Annal. Math., Series B 31(6), 921–938 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hong, M. C.: Global existence of solutions of the simplified Ericksen-Leslie system in dimension two. Calc. Var. 40(1), 15–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, X.: A representation formula of incompressible liquid crystal flow and its applications. Nonlinearity 30(5), 1911 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mika, K.: The Ising model without temperature-a possible explanation for the critical energy of the Onsager solution. Phys. A: Stat. Mech. Appl. 369 (2), 577–588 (2006)

    Article  Google Scholar 

  17. Onsager, M.G., Helfrich, J., Perugini, D.L., Chmiel, W.G., Weber, R., Miller, P.J.: Energy management and storage system. US, US8626403 B2 (2014)

  18. Wu, H., Xu, X., Liu, C.: On the general ericksen-leslie system: parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208 (1), 59–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dynam. Syst.-Series A 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT Numer. Math. 45(2), 307–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Du, Q., Zhu, W.: Stability analysis and application of the exponential time differencing schemes. J. Comput. Math.:200–209 (2004)

  25. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, M., Zhang, Z., Zhao, J.: Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J. Comput. Phy.:110954 (2022)

  27. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished article:6 (1998)

  28. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS online proceedings library (OPL):529 (1998)

  29. Cheng, K., Wang, C., Wise, S. M.: An energy stable finite difference scheme for the Ericksen-Leslie system with penalty function and its optimal rate convergence analysis. March:23 (2021)

  30. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38(5), A3264–A3290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Botti, L., Di Pietro, D. A.: A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J comput. Phys. 230(3), 572–585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, X., Ni, S., He, G.: A pressure-correction method and its applications on an unstructured Chimera grid. Comput. Fluids 37(8), 993–1010 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Adams, R.A., Fournier, J.J.: Sobolev spaces. Elsevier (2003)

  34. Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.V.: Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J. Comput. Phys. 230(4), 1686–1706 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hecht, F., Pironneau, O., Ohtsuka, K.: FreeFEM++. http://www.freefem.org/ff++/ (2010)

  36. Climent Ezquerra, M.B., Guillén González, F.M., Rojas Medar, M.A.: (2006). Reproductivity For a nematic liquid crystal model. Zeitschrift für angewandte Mathematik und Physik ZAMP 57(6), 984–998 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Guillén-González, F.M., Gutiérrez-Santacreu, J.V.: A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model. ESAIM: Math. Model. Numerical Anal. 47(5), 1433–1464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Research Project Supported by Shanxi Scholarship Council of China (No.2021-029) and International Cooperation Base and platform project of Shanxi Province (No.202104041101019). Shanxi Province Natural Science Foundation (No.202203021211129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danxia Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, N., Wang, D., Zhang, H. et al. A second-order BDF convex splitting numerical scheme for the Ericksen-Leslie equation. Numer Algor 94, 293–314 (2023). https://doi.org/10.1007/s11075-023-01501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01501-4

Keywords

Navigation