Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Global existence of solutions of the simplified Ericksen–Leslie system in dimension two

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the 1960s, Ericksen and Leslie established the hydrodynamic theory for modelling liquid crystal flow. In this paper, we investigate a simplified model of the Ericksen–Leslie system, which is a system of the Navier–Stokes equations coupled with the harmonic map flow. We prove global existence of solutions to the Ericksen–Leslie system in \({\mathbb{R}^{2}}\) with initial data, where the solutions are regular except for at a finite number of singular times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae H.-O., Choe H.-J., Jin B.J.: Pressure representaion and boundary regularity of Navier-Stokes euqations with slip boundary. J. Differ. Equ. 244, 2741–2763 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Caffarelli L., Kohn R., Nireberg L.: Partial regularity of suitable weak solutions of Navier-Stokes euqations. Comm. Pure Appl. Math. 35, 771–831 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen Y., Struwe M.: Existence and partial regular results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eells J., Sampson J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ericksen J.: Equilibrium Theory of Liquid Crystals. Academic Press, New York (1976)

    Google Scholar 

  6. Hong, M.-C., Hsi, D.: The heat flow for H-systems on higher dimensional manifolds, Indiana Univ. Math. J. (to appear)

  7. Hungerbühler, N.: m-Harmonic flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXIV(4), 593–631 (1997)

  8. Leslie, F.: Theory of flow phenomemum in liquid crystal. In: Brown (ed.) Advances in Liquid Crystals, vol. 4, pp. 1–81. Academic Press, New York (1979)

  9. Lin F.-H.: Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena. Comm. Pure Appl. Math. 42, 789–814 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lin F.-H.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. 51, 241–257 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lin F.-H., Liu C.: Nonparabolic dissipative systems modelling the flow of liquid cystals. Comm. Pure Appl. Math. 48, 501–537 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lin F.-H., Liu C.: Partial regularity of the dynamic system modelling the flow of liquid crystals. Discret. Contin. Dynam. Syst. 2, 1–22 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Lin F.-H., Liu C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lin F.-H., Wang C.: The Analysis of Harmonic Maps and their Heat Flows. World Scientific Publishing Co. Pvt. Ltd., Singapore (2008)

    Book  MATH  Google Scholar 

  15. Lin, F.-H., Lin, J., Wang, C.: Liquid crystal flow in two dimension. Arch. Ration. Mech. Anal. (to appear)

  16. Scheffer V.: Hausdorff measure and the Navier-Sokes equations. Comm. Math. Phys. 61, 97–112 (1977)

    Article  MathSciNet  Google Scholar 

  17. Stein E.: Singular Integral and Differential Property of Functions. Princeton University Press, Princeton (1970)

    Google Scholar 

  18. Struwe M.: On the evolution of harmonic maps of Riemannian surfaces. Commun. Math. Helv. 60, 558–581 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Struwe M.: The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160, 19–64 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Chun Hong.

Additional information

Communicated by N. Trudinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, MC. Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. 40, 15–36 (2011). https://doi.org/10.1007/s00526-010-0331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0331-5

Mathematics Subject Classification (2000)

Navigation