Abstract
We extend the geometrical inverse approximation approach to the linear least-squares scenario. For that, we focus on the minimization of \(1-\cos \limits (X(A^{T}A),I)\), where A is a full-rank matrix of size m × n, with m ≥ n, and X is an approximation of the inverse of ATA. In particular, we adapt the recently published simplified gradient-type iterative scheme MinCos to the least-squares problem. In addition, we combine the generated convergent sequence of matrices with well-known acceleration strategies based on recently developed matrix extrapolation methods, and also with some line search acceleration schemes which are based on selecting an appropriate steplength at each iteration. A set of numerical experiments, including large-scale problems, are presented to illustrate the performance of the different accelerations strategies.
Similar content being viewed by others
Notes
The Matlab package EPSfun is freely available at http://www.netlib.org/numeralgo/
References
Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12, 547–560 (1965)
Andreani, R., Raydan, M., Tarazaga, P.: On the geometrical structure of symmetric matrices. Linear Algebra Appl. 438, 1201–1214 (2013)
Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122, 1–21 (2000). Numerical Analysis in the 20th Century Vol. II: Interpolation and Extrapolation
Brezinski, C., Redivo-Zaglia, M.: Extrapolation methods theory and practice. North-Holland, Amsterdam (1991)
Brezinski, C., Redivo-Zaglia, M.: The simplified topological ε-algorithms for accelerating sequences in a vector space. SIAM J. Sci. Comput. 36, 2227–2247 (2014)
Brezinski, C., Redivo-Zaglia, M.: The simplified topological ε-algorithms: software and applications. Numer. Algor. 74, 1237–1260 (2017)
Brezinski, C., Redivo-Zaglia, M.: The genesis and early developments of Aitkens process, Shanks transformation, the ε-algorithm, and related fixed point methods. Numer. Algor. 84, 11–133 (2019)
Brezinski, C., Redivo-Zaglia, M., Saad, Y.: Shanks sequence transformations and Anderson acceleration. SIAM Rev. 60, 646–669 (2018)
Carr, L.E., Borges, C.F., Giraldo, F.X.: An element based spectrally optimized approximate inverse preconditioner for the Euler equations. SIAM J. Sci. Comput. 34, 392–420 (2012)
Chehab, J.-P.: Matrix differential equations and inverse preconditioners. Comput. Appl. Math. 26, 95–128 (2007)
Chehab, J.-P.: Sparse approximations of matrix functions via numerical integration of ODEs. Bull. Comput. Appl. Math. 4, 95–132 (2016)
Chehab, J.P., Raydan, M.: Geometrical properties of the Frobenius condition number for positive definite matrices. Linear Algebra Appl. 429, 2089–2097 (2008)
Chehab, J.P., Raydan, M.: Geometrical inverse preconditioning for symmetric positive definite matrices. Mathematics 4(3), 46 (2016). https://doi.org/10.3390/math4030046
Chen, K.: An analysis of sparse approximate inverse preconditioners for boundary integral equations. SIAM J. Matrix Anal. Appl. 22, 1058—1078 (2001)
Chow, E., Saad, Y.: Approximate inverse techniques for block-partitioned matrices. SIAM J. Sci. Comput. 18, 1657–1675 (1997)
Chung, J., Chung, M., O’Leary, D.P.: Optimal regularized low rank inverse approximation. Linear Algebra Appl. 468, 260–269 (2015)
Cui, X., Hayami, K.: Generalized approximate inverse preconditioners for least squares problems. J.pan J. Indust. Appl. Math. 26, 1–14 (2009)
De Asmundis, R., di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of steepest descent methods. IMA J. Numer. Anal. 33, 1416–1435 (2013)
Delahaye, J.P., Germain-Bonne, B.: Résultats négatifs en accélération de la convergence. Numer. Math. 35, 443–457 (1980)
Diniz-Ehrhardt, M.A., Martínez, J.M., Raydan, M.: A derivative-free nonmonotone line search technique for unconstrained optimization. J. Comput. Appl. Math. 219, 383–397 (2008)
Forsman, K., Gropp, W., Kettunen, L., Levine, D., Salonen, J.: Solution of dense systems of linear equations arising from integral equation formulations. Antennas and Propagation Magazine 37, 96–100 (1995)
Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind. Manag. Optim. 4, 299–312 (2008)
Glunt, W., Hayden, T.L.: M. Raydan molecular conformations from distance matrices. J. Comput. Chem. 14, 114–120 (1993)
Gould, N.I.M., Scott, J.A.: Sparse approximate-inverse preconditioners using norm-minimization techniques. SIAM J. Sci. Comput. 19, 605–625 (1998)
Graves-Morris, P.R., Roberts, P.R., Salam, A.: The epsilon algorithm and related topics. J. Comput. Appl. Math. 122, 51–80 (2000)
Helsing, J.: Approximate inverse preconditioners for some large dense random electrostatic interaction matrices. BIT Numer. Math. 46, 307–323 (2006)
Henderson, N.C., Varadhan, R.: Damped Anderson acceleration with restarts and monotonicity control for accelerating EM and EM like algorithms, Journal of Computational and Graphical Statistics. https://doi.org/10.1080/10618600.2019.1594835 (2019)
Higham, N., Strabić, N.: Anderson acceleration of the alternating projections method for computing the nearest correlation matrix. Numer. Algor. 72, 1021–1042 (2016)
Iannazzo, B., Porcelli, M.: The Riemannian Barzilai-Borwein method with nonmonotone line-search and the matrix geometric mean computation. IMA J. Numer. Anal. 38, 495–517 (2018)
Jbilou, K., Messaoudi, A.: Block extrapolation methods with applications. Appl. Numer. Math. 106, 154–164 (2016)
Jbilou, K., Sadok, H.: Vector extrapolation methods: applications and numerical comparison. J. Comput. Appl. Math. 122, 149–165 (2000)
Jbilou, K., Sadok, H.: Matrix polynomial and epsilon-type extrapolation methods with applications. Numer. Algor. 68, 107–119 (2015)
Matos, A.C.: Convergence and acceleration properties for the vector 𝜖-algorithm. Numer. Algor. 3, 313–320 (1992)
Matrix Market, http://math.nist.gov/MatrixMarket/
Montero, G., González, L., Flórez, E., García, M.D., Suárez, A.: Approximate inverse computation using Frobenius inner product. Numerical Linear Algebra with Applications 9, 239–247 (2002)
Raydan, M., Svaiter, B.: Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Comput. Optim. Appl. 21, 155–167 (2002)
Sajo-Castelli, A.M., Fortes, M.A., Raydan, M.: Preconditioned conjugate gradient method for finding minimal energy surfaces on Powell-Sabin triangulations. J. Comput. Appl. Math. 268, 34–55 (2014)
di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods for unconstrained optimization. Appl. Math. Comput. 318, 176–195 (2018)
Sidje, R.B., Saad, Y.: Rational approximation to the Fermi–Dirac function with applications in density functional theory. Numer. Algor. 56, 455–479 (2011)
Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49, 1715–1735 (2011)
Wang, J.-K., Lin, S.D.: Robust inverse covariance estimation under noisy measurements. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), 928–936 (2014)
Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive step-sizes. Comput. Optim. Appl. 35, 69–86 (2006)
Acknowledgments
We would like to thank two anonymous referees for their constructive comments and suggestions that helped us improve the final version of this paper.
Funding
This study is financially supported by CNRS throughout a 3-month Poste Rouge stay, in LAMFA Laboratory, (UMR CNRS 7352) at Université de Picardie Jules Verne, Amiens, France, from February 1 to April 30, 2019; and also by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2019 (CMA), starting on May 1, 2019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chehab, JP., Raydan, M. Geometrical inverse matrix approximation for least-squares problems and acceleration strategies. Numer Algor 85, 1213–1231 (2020). https://doi.org/10.1007/s11075-019-00862-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00862-z