Abstract
In this paper, we consider the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear time-fractional Tricomi-type equation (TFTTE), which is obtained from the standard one-dimensional linear Tricomi-type equation by replacing the first-order time derivative with a fractional derivative (of order α, with 1 < α ≤ 2). The proposed LDG is based on LDG finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the numerical solution converges to the exact one with order O(h k + 1 + τ 2), where h, τ and k are the space step size, time step size, polynomial degree, respectively. The comparison of the LDG results with the exact solutions is made, numerical experiments reveal that the LDG is very effective.
Similar content being viewed by others
References
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
He, J.H.: Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating Engineering’98. Dalian, China, pp. 288–291 (1998)
He, J.H.: Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol. 15, 86–90 (1999)
He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)
Mainardi, F.: Fractional calculus, some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F., (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, Wien (1997)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Kemppainen, J.T., Ruotsalainen, K.M.: On the spline collocation method for the single layer equation related to time-fractional diffusion. Numer. Algorithms 57 313–327 (2011)
Shen, S.J., Liu, F.W., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation. Numer. Algorithms 56, 383–403 (2011)
Chen, S., Liu, F.W., Anh, V.: A novel implicit finite difference method for the one-dimensional fractional percolation equation. Numer. Algorithms 56 517–535 (2011)
Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)
Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)
Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)
Meerschaert, M.M., Benson, D.A., Baeumer, B.: Multidimensional advection and fractional dispersion. Phys. Rev. E. 59, 5026–5028 (1999)
Podlubny, I.: The Laplace Transform Method for Linear Differential Equations of Fractional Order. Slovac Academy of Science, Slovak Republic (1994)
Nawaz, Y.: Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput. Math. Appl. 61, 2330–2341 (2011)
Luchko, Y., Srivastava, H.: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29, 73–85 (1995)
Cveticanin, L.: Homotopy perturbation method for pure nonlinear differential equation. Chaos, Solitons Fractals 30, 1221–1230 (2006)
Rajabi, A., Ganji, D.D., Taherian, H.: Application of homotopy perturbation method in nonlinear heat conduction and convection equations. Phys. Lett. A 360, 570–573 (2007)
Feng, X.L., Mei, L.Q., He, G.L.: An efficient algorithm for solving Troesch’s problem. Appl. Math. Comput. 189, 500–507 (2007)
Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)
Ganji, Z.Z., Ganji, D.D., Jafari, H., et al.: Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives. Topol. Methods Nonlinear Anal. 31, 341–348 (2008)
Yıldırım, A., Hüseyin, K.: Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Adv. Water Resour. 32, 1711–1716 (2009)
Jafari, H., Golbabai, A., Seifi, S., Sayevand, K.: Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order. Comput. Math. Appl. 59, 1337–1344 (2010)
Elsaid, A.: Homotopy analysis method for solving a class of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3655–3664 (2011)
Zhang, X.D., Tang, B., He, Y.N.: Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 62, 3194–3203 (2011)
Tricomi, F.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Rend. R. Accad. Lincei, Cl. Sci. Fis. Mat. Natur. 5(14), 134–247 (1923)
Frankl, F.: On the problems of Chaplygin for mixed sub- and supersonic flows. Bull. Acad. Sci. USSR Ser. Math. 9, 121–143 (1945)
Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics. In: Surveys in Applied Mathematics, vol. 3. Wiley/Chapman & Hall, New York/London (1958)
Cole, J.D., Cook, L.P.: Transonic Aerodynamics. Elsevier/North-Holland, Amsterdam/New York (1986)
Germain, P.: The Tricomi equation, its solutions and their applications in fluid dynamics. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Rome/Turin (1997). In: Atti Convegni Lincei, vol. 147, pp. 7–26. Accad. Naz. Lincei, Rome (1998)
Morawetz, C.: Mixed equations and transonic flow. J. Hyperbol Differ. Eq. 1(1), 1–26 (2004)
Nocilla, S.: Applications and developments of the Tricomi equation in the transonic aerodynamics. In: Mixed Type Equations, Teubner-Texte Math., vol. 90, pp. 216–241. Teubner, Leipzig (1986)
Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)
Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)
Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. (M2AN) 25, 337–361 (1991)
Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for timedependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)
Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)
Levy, D., Shu, C.-W., Yan, J.: Local discontinuous Galerkin methods for nonlinear dispersive equations. J. Comput. Phys. 196, 751–772 (2004)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)
Castillo, P.E.: Stencil reduction algorithms for the Local Discontinuous Galerkin method. Int. J. Numer. Methods Eng. 81, 1475–1491 (2010)
Shao, L., Feng, X.L., He, Y.N.: The local discontinuous Galerkin finite element method for Burger’s equation. Math. Comput. Model. 54, 2943–2954 (2011)
Mustapha, K.: The hp- and h-versions of the discontinuous and local discontinuous Galerkin methods for one-dimensional singularly perturbed models. Appl. Numer. Math. 61, 1223–1236 (2011)
Castillo, P., Sequeira, F.A.: Computational aspects of the local discontinuous Galerkin method on unstructured grids in three dimensions. Math. Comput. Model. (2011). doi:10.1016/j.mcm.2011.07.032
Cockburn, B., Dawson, C.: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions. In: Whiteman, J. (ed.) Proceedings of the Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, pp. 225–238. Elsevier (2000)
Castillo, P., Cockburn, B., Schötzau, D., Schwab, Ch.: Optimal a priori error estimates for the hp-version of the Local Discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71, 455–478 (2001)
Castillo, P.: An optimal error estimate for the local discontinuous Galerkin method. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Lectures Notes in Computational Science and Engineering, vol. 11, pp. 285–290. Springer (2000)
Wei, L.L., Zhang, X.D., He, Y.N.: Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations. Int. J. Numer. Methods Heat Fluid Flow (2012, in press)
Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)
Wei, L.L., He, Y.N., Zhang, X.D., Wang, S.L.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the Key Project of Chinese Ministry of Education (211202), the NSF of China (Nos. 10971166 and 61163027) and the National High Technology Research and Development Program of China (863 Program, No. 2009AA01A135).
Rights and permissions
About this article
Cite this article
Zhang, X., Liu, J., Wen, J. et al. Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods. Numer Algor 63, 143–164 (2013). https://doi.org/10.1007/s11075-012-9617-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-012-9617-3