Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Galerkin Finite Element Method for a Class of Time–Space Fractional Differential Equation with Nonsmooth Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, a Galerkin finite element approximation for a class of time–space fractional differential equation is studied, under the assumption that \(u_{tt}, u_{ttt}, u_{2\alpha ,tt}\) are continuous for \(\varOmega \times (0,T]\), but discontinuous at time \(t=0\). In spatial direction, the Galerkin finite element method is presented. And in time direction, a Crank–Nicolson time-stepping is used to approximate the fractional differential term, and the product trapezoidal method is employed to treat the temporal fractional integral term. By using the properties of the fractional Ritz projection and the fractional Ritz–Volterra projection, the convergence analyses of semi-discretization scheme and full discretization scheme are derived separately. Due to the lack of smoothness of the exact solution, the numerical accuracy does not achieve second order convergence in time, which is \(O(k^{3-\beta }+k^{3}t_{n+1}^{-\beta }+k^{3}t_{n+1}^{-\beta -1})\), \(n=0,1,\ldots ,N-1\). But the convergence order in time is shown to be greater than one. Numerical examples are also included to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaeert, M.M.: The fractional order governing equations of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  3. Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)

    Article  MathSciNet  Google Scholar 

  4. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Miller, R.K.: An integro-differential equation for grid heat conductions with memory. J. Math. Anal. Appl. 66, 313–332 (1978)

    Article  MathSciNet  Google Scholar 

  6. Baleanu, D., Güvenc, Z.B., Tenreiro Machado, J.A.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  7. Christensen, R.M.: Theory of Viscolasticity. Academic Press, New York (1971)

    Google Scholar 

  8. Renardy, M.: Mathematical analysis of viscoelastic flows. Ann. Rev. Fluid Mech. 21, 21–36 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Yang, Q., Liu, F., Turner, I.: Stability and convergence of an effective numerical method for the time–space fractional Fokker–Planck equation with a nonlinear source term. Int. J. Diff. Eq. (2010). doi:10.1155/2010/464321

  11. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, Z.G., Li, C.P.: Fractional difference/finite element approximations for the time–space fractional telegraph equation. Appl. Math. Comput. 219, 2975–2988 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch–Torrey equations in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013)

    Google Scholar 

  14. Yu, Q., Liu, F., Turner, I., Burrage, K.: Stability and convergence of an implicit numerical method for the space and time fractional Bloch–Torrey equation. Phil. Trans. R. Soc. (2013). doi:10.1098/rsta.2012.0150

  15. Song, J., Yu, Q., Liu, F., Turner, I.: A spatially second-order accurate implicit numerical method for the space and time fractional Bloch–Torrey equation. Numer. Algo. 66, 911–932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, H., Liu, F., Zhuang, P., Turner, I., Anh, V.: Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl. Math. Comput. 242, 541–550 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time-fractional Fokker–Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zeng, F.H., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)

    MATH  Google Scholar 

  21. Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25, 319–327 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, T.: A finite difference scheme for partial integro-differential equation with a weakly singualr kernel. Appl. Numer. Math. 11, 309–319 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Partial Diff. Equ. 22, 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bu, W.P., Tang, Y.F., Yang, J.Y.: Galerkin finite element method for two dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, Z.G., Zheng, Y.Y., Guo, P.: A Galerkin finite element scheme for time–space fractional diffusion quation. Int. J. Comput. Math. (2015). doi:10.1080/00207160.2015.1044986

  30. Samko, S.C., Kilbas, A.A., Maxitchev, O.I.: Integrals and Derivatives of the Fractional Order and Some of Their Applications. Nauka i Tekhnika, Minsk (1987). (in Russian)

  31. Chen, C.M., Shih, T.: Finite Element Methods for Integrodifferential Equations. Word Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  32. Zheng, Y.Y., Li, C.P., Zhao, Z.G.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York, Berlin (1994)

    Book  MATH  Google Scholar 

  34. Cannon, J.R., Lin, Y.P.: A priori \(L^{2}\) error estimates for Galerkin methods for nonlinear parbolic integro-differential equations. SIAM J. Numer. Anal. 21, 595–602 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Larsson, S., Thomé, V., Wahlbin, L.B.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. 67, 45–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, J.T.: Finite element method for partial Volterra integro-diffeential equations on two-dimensions unbounded spatial domains. Appl. Math. Comput. 186, 598–609 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Zeng, F.H., Cao, J.X., Li, C.P.: Gronwall inequalities, In: Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis. World Scientific, Singapore, pp. 49–68 (2013)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Number 11301333; Innovation Program of Shanghai Municipal Education Commission under Grant Number 14YZ165; Funding Scheme for Training Young Teachers in Shanghai Colleges under Grant Number zzhg12001; Natural Science Foundation of Anhui provence under Grant Number 1408085MA1; and Funding Scheme for Training Young Teachers in Shanghai Colleges under Grant Number 14AZ17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zheng, Y. & Guo, P. A Galerkin Finite Element Method for a Class of Time–Space Fractional Differential Equation with Nonsmooth Data. J Sci Comput 70, 386–406 (2017). https://doi.org/10.1007/s10915-015-0107-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0107-3

Keywords

Navigation