Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

New method for bio - signals zero - watermarking using quaternion shmaliy moments and short-time fourier transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we first present a stable computation of high-order discrete orthonormalized Shmaliy polynomials (SPs). Then, based on SPs we introduce a new type of color image descriptor called Quaternion Shmaliy Moments (QSMs). This descriptor is applied to the copyright protection of bio-signals after converting the latter into color spectrograms images using the Short-Time Fourier Transform (STFT). The proposed method for bio-signal copyright protection is implemented via a novel zero-watermarking scheme. The simulation and comparison results prove on one hand the numerical stability of the proposed computation of high-order SPs, and on the other hand, they demonstrate the robustness of the proposed zero-watermarking scheme against various signal-processing attacks (compression, filtering, noise, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ali Z, Imran M, Alsulaiman M, Zia T, Shoaib M (2018) A zero-watermarking algorithm for privacy protection in biomedical signals. Future Gener Comput Syst 82:290–303

    Article  Google Scholar 

  2. Ali Z, Hossain MS, Muhammad G, Aslam M (2018) New zero-watermarking algorithm using Hurst exponent for protection of privacy in telemedicine. IEEE Access 6:7930–7940

    Article  Google Scholar 

  3. Ali Z, Imran M, Alsulaiman M, Shoaib M, Ullah S (2018) Chaos-based robust method of zero-watermarking for medical signals. Future Gener Comput Syst 88:400–412

    Article  Google Scholar 

  4. Arora M, Kumar M (2021) AutoFER: PCA and PSO based automatic facial emotion recognition. Multimed Tools Appl 80:3039–3049. https://doi.org/10.1007/s11042-020-09726-4

    Article  Google Scholar 

  5. Asli BHS, Flusser J (2017) New discrete orthogonal moments for signal analysis. Signal Process 141:57–73

    Article  Google Scholar 

  6. Bansal M, Kumar M, Kumar M (2020) 2D object recognition techniques: state-of-the-art work. Arch Comput Methods Eng:1–15

  7. Bansal M, Kumar M, Kumar M (2021) 2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors. Multimed Tools Appl:1–19

  8. Bansal M, Kumar M, Kumar M, Kumar K (2021) An efficient technique for object recognition using Shi-Tomasi corner detection algorithm. Soft Comput 25:4423–4432

    Article  Google Scholar 

  9. Benouini R, Batioua I, Zenkouar K, Zahi A, Fadili HE, Qjidaa H (2019) Fast and accurate computation of Racah moment invariants for image classification. Pattern Recogn 91:100–110. https://doi.org/10.1016/j.patcog.2019.02.014

    Article  Google Scholar 

  10. Camacho-Bello C, Rivera-Lopez JS (2018) Some computational aspects of Tchebichef moments for higher orders. Pattern Recogn Lett 112:332–339. https://doi.org/10.1016/j.patrec.2018.08.020

    Article  Google Scholar 

  11. Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21:749–761

    Article  MathSciNet  Google Scholar 

  12. Chhabra P, Garg NK, Kumar M (2020) Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl 32:2725–2733

    Article  Google Scholar 

  13. Daoui A, Yamni M, Karmouni H, Sayyouri M, Qjidaa H (2020) Biomedical signals reconstruction and zero-watermarking using separable fractional order Charlier- Krawtchouk transformation and sine cosine algorithm (SCA). Signal Process 107854. https://doi.org/10.1016/j.sigpro.2020.107854

  14. Daoui A, Yamni M, Karmouni H, El Ogri O, Sayyouri M, Qjidaa H (2020) Fast and stable bio-signals reconstruction using Krawtchouk moments. Adv Intell Syst Comput 1076:369–377. https://doi.org/10.1007/978-981-15-0947-6_35

    Article  MATH  Google Scholar 

  15. Daoui A, Yamni M, El O, Ogri HK, Sayyouri M, Qjidaa H (2020) Stable computation of higher order Charlier moments for signal and image reconstruction. Inf Sci 521:251–276. https://doi.org/10.1016/j.ins.2020.02.019

    Article  MATH  Google Scholar 

  16. Daoui A, Sayyouri M, Qjidaa H (2020) Efficient computation of high-order Meixner moments for large-size signals and images analysis. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-09739-z

  17. Daoui A, Yamni M, Ogri OE, Karmouni H, Sayyouri M, Qjidaa H (2020) New algorithm for large-sized 2D and 3D image reconstruction using higher-order Hahn moments. Circuits Syst Signal Process. https://doi.org/10.1007/s00034-020-01384-z

  18. Daoui A, Yamni M, Karmouni H, Ogri OE, Sayyouri M, Qjidaa H (2020) Efficient Reconstruction and Compression of Large Size ECG Signal by Tchebichef Moments. In: 2020 Int. Conf. Intell. Syst. Comput. Vis. ISCV, pp 1–6. https://doi.org/10.1109/ISCV49265.2020.9204132

    Chapter  Google Scholar 

  19. Daoui A, Karmouni H, Sayyouri M, Qjidaa H, Maaroufi M, Alami B (2021) New robust method for image copyright protection using histogram features and Sine Cosine Algorithm. Expert Syst Appl 177. https://doi.org/10.1016/j.eswa.2021.114978

  20. Digital Signal Processing, Elsevier, 2019. https://doi.org/10.1016/C2017-0-02319-4.

  21. González G, Nava R, Escalante-Ramírez B (2018) A comparative study on discrete Shmaliy moments and their texture-based applications. Math Probl Eng 2018:1–17

    Google Scholar 

  22. Gupta S, Kumar M, Garg A (2019) Improved object recognition results using SIFT and ORB feature detector. Multimed Tools Appl 78:34157–34171

    Article  Google Scholar 

  23. Hamilton WR (1866) Elements of quaternions. Longmans, Green, & Company

    Google Scholar 

  24. Hosny KM, Khalid AM, Mohamed ER (2018) Efficient compression of bio-signals by using Tchebichef moments and artificial bee Colony. Biocybern Biomed Eng 38:385–398. https://doi.org/10.1016/j.bbe.2018.02.006

    Article  Google Scholar 

  25. Huang J, Chen B, Yao B, He W (2019) ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access. 7:92871–92880

    Article  Google Scholar 

  26. Jahid T, Karmouni H, Hmimid A, Sayyouri M, Qjidaa H (2017) Image moments and reconstruction by Krawtchouk via Clenshaw’s reccurence formula. In: 2017 Int. Conf. Electr. Inf. Technol. ICEIT. IEEE, pp 1–7

    Google Scholar 

  27. Jahid T, Karmouni H, Hmimid A, Sayyouri M, Qjidaa H (2019) Fast computation of Charlier moments and its inverses using Clenshaw’s recurrence formula for image analysis. Multimed Tools Appl 78:12183–12201

    Article  Google Scholar 

  28. Karakasis EG, Papakostas GA, Koulouriotis DE, Tourassis VD (2013) Generalized dual Hahn moment invariants. Pattern Recogn 46:1998–2014. https://doi.org/10.1016/j.patcog.2013.01.008

    Article  MATH  Google Scholar 

  29. Karmouni H, Jahid T, El Affar I, Sayyouri M, Hmimid A, Qjidaa H, Rezzouk A (2017) Image analysis using separable Krawtchouk-Tchebichef’s moments. In: 2017 Int. Conf. Adv. Technol. Signal Image Process. ATSIP, IEEE, pp 1–5

    Google Scholar 

  30. Karmouni H, Jahid T, Lakhili Z, Hmimid A, Sayyouri M, Qjidaa H, Rezzouk A (2017) Image reconstruction by Krawtchouk moments via digital filter. In: 2017 Intell. Syst. Comput. Vis. ISCV. IEEE, pp 1–7

    Google Scholar 

  31. Karmouni H, Jahid T, Sayyouri M, El Alami R, Qjidaa H (2019) Fast 3D image reconstruction by cuboids and 3D Charlier’s moments. J Real-Time Image Process 17:1–17

    MATH  Google Scholar 

  32. Karmouni H, Jahid T, Hmimid A, Sayyouri M, Qjidaa H (2019) Fast computation of inverse Meixner moments transform using Clenshaw’s formula. Multimed Tools Appl 78:31245–31265. https://doi.org/10.1007/s11042-019-07961-y

    Article  MATH  Google Scholar 

  33. Kumar M, Kumar M (2021) XGBoost: 2D-object recognition using shape descriptors and extreme gradient boosting classifier. In: Comput Methods Data Eng. Springer, pp 207–222

    Google Scholar 

  34. Kumar M, Chhabra P, Garg NK (2018) An efficient content based image retrieval system using BayesNet and K-NN. Multimed Tools Appl 77:21557–21570

    Article  Google Scholar 

  35. Kumar A, Kumar M, Kaur A (2021) Face detection in still images under occlusion and non-uniform illumination. Multimed Tools Appl 80:14565–14590

    Article  Google Scholar 

  36. Meenpal T, Goyal A, Mukherjee M (2019) Spatial domain representation for face recognition. In: Vis. Object Track. Deep Neural Netw. https://doi.org/10.5772/intechopen.85382

    Chapter  Google Scholar 

  37. Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20:45–50

    Article  Google Scholar 

  38. Morales-Mendoza LJ, Gamboa-Rosales H, Shmaliy YS (2013) A new class of discrete orthogonal polynomials for blind fitting of finite data. Signal Process 93:1785–1793

    Article  Google Scholar 

  39. Ogri OE, Daoui A, Yamni M, Karmouni H, Sayyouri M, Qjidaa H (2019) 2D and 3D medical image analysis by discrete orthogonal moments. Procedia Comput Sci 148:428–437. https://doi.org/10.1016/j.procs.2019.01.055

    Article  MATH  Google Scholar 

  40. Sangwine SJ, Ell TA (2001) Hypercomplex Fourier transforms of color images. In: Proc. 2001 Int. Conf. Image Process. Cat No 01CH37205. IEEE, pp 137–140

    Google Scholar 

  41. Sayyouri M, Hmimid A, Qjidaa H (2012) A fast computation of Hahn moments for binary and gray-scale images. In: 2012 IEEE Int. Conf. Complex Syst. ICCS, pp 1–6. https://doi.org/10.1109/ICoCS.2012.6458538

    Chapter  Google Scholar 

  42. Sayyouri M, Hmimid A, Qjidaa H (2013) Improving the performance of image classification by Hahn moment invariants. JOSA A 30:2381–2394. https://doi.org/10.1364/JOSAA.30.002381

    Article  Google Scholar 

  43. Shao Z, Shang Y, Zhang Y, Liu X, Guo G (2016) Robust watermarking using orthogonal Fourier–Mellin moments and chaotic map for double images. Signal Process 120:522–531. https://doi.org/10.1016/j.sigpro.2015.10.005

    Article  Google Scholar 

  44. Takamichi S, Saito Y, Takamune N, Kitamura D, Saruwatari H (2018) Phase Reconstruction from Amplitude Spectrograms Based on Von-Mises-Distribution Deep Neural Network. In: 2018 16th Int. Workshop Acoust Signal Enhanc IWAENC, pp 286–290. https://doi.org/10.1109/IWAENC.2018.8521313

    Chapter  Google Scholar 

  45. Thanh TM, Tanaka K (2017) An image zero-watermarking algorithm based on the encryption of visual map feature with watermark information. Multimed Tools Appl 76:13455–13471. https://doi.org/10.1007/s11042-016-3750-2

    Article  Google Scholar 

  46. Umapathy K, Krishnan S, Parsa V, Jamieson DG (2005) Discrimination of pathological voices using a time-frequency approach. IEEE Trans Biomed Eng 52:421–430

    Article  Google Scholar 

  47. Wang C, Wang X, Chen X, Zhang C (2017) Robust zero-watermarking algorithm based on polar complex exponential transform and logistic mapping. Multimed Tools Appl 76:26355–26376. https://doi.org/10.1007/s11042-016-4130-7

    Article  Google Scholar 

  48. Wang C, Wang X, Xia Z, Zhang C (2019) Ternary radial harmonic Fourier moments based robust stereo image zero-watermarking algorithm. Inf Sci 470:109–120. https://doi.org/10.1016/j.ins.2018.08.028

    Article  Google Scholar 

  49. Wang W, Zhang G, Yang L, Balaji VS, Elamaran V, Arunkumar N (2019) Revisiting signal processing with spectrogram analysis on EEG, ECG and speech signals. Future Gener Comput Syst 98:227–232. https://doi.org/10.1016/j.future.2018.12.060

    Article  Google Scholar 

  50. Wen Q, Sun TF, Wang S (2001) Based zero-watermark digital watermarking technology. In: Third China Inf. Hiding Multimed. Secur. Workshop CIHW Xidain Univ. Press Xi’an

  51. Weruaga L, Képesi M (2007) The fan-chirp transform for non-stationary harmonic signals. Signal Process 87:1504–1522. https://doi.org/10.1016/j.sigpro.2007.01.006

    Article  MATH  Google Scholar 

  52. Xia Z, Wang X, Zhou W, Li R, Wang C, Zhang C (2019) Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms. Signal Process 157:108–118. https://doi.org/10.1016/j.sigpro.2018.11.011

    Article  Google Scholar 

  53. Yamni M, Daoui A, Karmouni H, Sayyouri M, Qjidaa H (2019) Influence of Krawtchouk and Charlier moment’s parameters on image reconstruction and classification. Procedia Comput Sci 148:418–427

    Article  Google Scholar 

  54. Yamni M, Karmouni H, Sayyouri M, Qjidaa H, Flusser J (2021) Novel Octonion moments for color stereo image analysis. Digit Signal Process 108:102878

    Article  Google Scholar 

  55. Yap P-T, Paramesran R (2003) Seng-Huat Ong, image analysis by Krawtchouk moments. IEEE Trans Image Process 12:1367–1377. https://doi.org/10.1109/TIP.2003.818019

    Article  MathSciNet  Google Scholar 

  56. Yap P-T, Paramesran R, Ong S-H (2007) Image analysis using Hahn moments. IEEE Trans Pattern Anal Mach Intell 29:2057–2062

    Article  Google Scholar 

  57. Zhang G, Luo Z, Fu B, Li B, Liao J, Fan X, Xi Z (2010) A symmetry and bi-recursive algorithm of accurately computing Krawtchouk moments. Pattern Recogn Lett 31:548–554

    Article  Google Scholar 

  58. Zhang W, Han J, Deng S (2017) Heart sound classification based on scaled spectrogram and tensor decomposition. Expert Syst Appl 84:220–231

    Article  Google Scholar 

  59. Zhang W, Han J, Deng S (2017) Heart sound classification based on scaled spectrogram and partial least squares regression. Biomed Signal Process Control 32:20–28

    Article  Google Scholar 

  60. Zhu H, Shu H, Zhou J, Luo L, Coatrieux JL (2007) Image analysis by discrete orthogonal dual Hahn moments. Pattern Recogn Lett 28:1688–1704. https://doi.org/10.1016/j.patrec.2007.04.013

    Article  Google Scholar 

  61. Zhu H, Shu H, Liang J, Luo L, Coatrieux J-L (2007) Image analysis by discrete orthogonal Racah moments. Signal Process 87:687–708. https://doi.org/10.1016/j.sigpro.2006.07.007

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achraf Daoui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoui, A., Karmouni, H., Sayyouri, M. et al. New method for bio - signals zero - watermarking using quaternion shmaliy moments and short-time fourier transform. Multimed Tools Appl 81, 17369–17399 (2022). https://doi.org/10.1007/s11042-022-12660-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12660-2

Keywords

Navigation