Abstract
Discrete orthogonal moments such as Hahn moments are powerful tools for image analysis, especially for the reconstruction of 2D and 3D images. Several methods have been proposed to calculate Hahn moments, but the computation of the kernel polynomials of these latter is limited by the problem of the numerical fluctuation of higher-order polynomial values (overflow). In this paper, we propose an efficient method for the exact computation of Hahn polynomials using the modified Gram–Schmidt orthonormalization processes. This method greatly reduces the propagation of numerical errors involved in the computation of Hahn polynomials by the conventional methods. The method thus proposed is used for reconstructing large-sized 2D and 3D images. A comparison with other kinds of discrete orthogonal moments is also established in order to validate the stability and superiority of the proposed method when reconstructing large-sized 2D and 3D images. The results obtained show the reliability and effectiveness of the proposed method in terms of computation accuracy and numerical stability of high-order Hahn moments.
Similar content being viewed by others
References
S.H. Abdulhussain, A.R. Ramli, S.A.R. Al-Haddad, B.M. Mahmmod, W.A. Jassim, On computational aspects of Tchebichef polynomials for higher polynomial order. IEEE Access 5, 2470–2478 (2017)
S.H. Abdulhussain, A.R. Ramli, S.A.R. Al-Haddad, B.M. Mahmmod, W.A. Jassim, Fast recursive computation of Krawtchouk polynomials. J. Math. Imaging Vis. 60, 285–303 (2018)
R. Benouini, I. Batioua, K. Zenkouar, F. Mrabti, H.E. Fadili, New set of generalized legendre moment invariants for pattern recognition. Pattern Recognit. Lett. 123, 39–46 (2019)
R. Benouini, I. Batioua, K. Zenkouar, A. Zahi, H.E. Fadili, H. Qjidaa, Fast and accurate computation of Racah moment invariants for image classification. Pattern Recognit. 91, 100–110 (2019)
G.C. Birch, J.C. Griffin, Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers. Opt. Eng. 54, 074104 (2015)
C. Camacho-Bello, J.S. Rivera-Lopez, Some computational aspects of Tchebichef moments for higher orders. Pattern Recognit. Lett. 112, 332–339 (2018)
A. Daoui, M. Yamni, H. Karmouni, M. Sayyouri, H. Qjidaa, Stable computation of higher order Charlier moments for signal and image reconstruction. Inf. Sci. 521, 251–276 (2020). https://doi.org/10.1016/j.ins.2020.02.019
A.-W. Deng, C.-H. Wei, C.-Y. Gwo, Stable, fast computation of high-order Zernike moments using a recursive method. Pattern Recognit. 56, 16–25 (2016)
F. Ernawan, N. Kabir, K.Z. Zamli, An efficient image compression technique using Tchebichef bit allocation. Optik 148, 106–119 (2017)
A. Hmimid, M. Sayyouri, H. Qjidaa, Image classification using separable invariant moments of Charlier-Meixner and support vector machine. Multimed. Tools Appl. 77, 23607–23631 (2018)
B. Honarvar Shakibaei Asli, J. Flusser, Fast computation of Krawtchouk moments. Inf. Sci. 288, 73–86 (2014)
K.M. Hosny, A.M. Khalid, E.R. Mohamed, Efficient compression of volumetric medical images using Legendre moments and differential evolution. Soft. Comput. 24, 409–427 (2020)
M.-K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory. 8, 179–187 (1962)
T. Jahid, A. Hmimid, H. Karmouni, M. Sayyouri, H. Qjidaa, A. Rezzouk, Image analysis by Meixner moments and a digital filter. Multimed. Tools Appl. 77, 19811–19831 (2018)
T. Jahid, H. Karmouni, A. Hmimid, M. Sayyouri, H. Qjidaa, Fast computation of Charlier moments and its inverses using Clenshaw’s recurrence formula for image analysis. Multimed. Tools Appl. 78, 12183–12201 (2019)
E.G. Karakasis, G.A. Papakostas, D.E. Koulouriotis, V.D. Tourassis, Generalized dual Hahn moment invariants. Pattern Recognit. 46, 1998–2014 (2013)
H. Karmouni, A. Hmimid, T. Jahid, M. Sayyouri, H. Qjidaa, A. Rezzouk, Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation. Circuits Syst. Signal Process. 37, 4015–4033 (2018)
H. Karmouni, T. Jahid, A. Hmimid, M. Sayyouri, H. Qjidaa, Fast computation of inverse Meixner moments transform using Clenshaw’s formula. Multimed. Tools Appl. 78, 31245–31265 (2019)
H. Karmouni, T. Jahid, M. Sayyouri, R. El Alami, H. Qjidaa, Fast 3D image reconstruction by cuboids and 3D Charlier’s moments. J. Real-Time Image Process. pp. 1–17 (2019)
H. Karmouni, T. Jahid, M. Sayyouri, A. Hmimid, H. Qjidaa, Fast reconstruction of 3D images using charlier discrete orthogonal moments. Circuits Syst. Signal Process. 38(8), 3715–3742 (2019). https://doi.org/10.1007/s00034-019-01025-0
R. Mukundan, Some computational aspects of discrete orthonormal moments. IEEE Trans. Image Process. 13, 1055–1059 (2004)
R. Mukundan, S.H. Ong, P.A. Lee, Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10, 1357–1364 (2001)
C. Peng, D. Cao, Y. Wu, Q. Yang, Robot visual guide with Fourier–Mellin based visual tracking. Front. Optoelectron. 12, 413–421 (2019)
S.M.M. Rahman, T. Howlader, D. Hatzinakos, On the selection of 2D Krawtchouk moments for face recognition. Pattern Recognit. 54, 83–93 (2016)
A. Salah, K. Li, K.M. Hosny, M.M. Darwish, Q. Tian, Accelerated CPU–GPUs implementations for quaternion polar harmonic transform of color images. Future Gener. Comput. Syst. 107, 368–382 (2020)
M. Sayyouri, A. Hmimid, H. Qjidaa, A fast computation of Hahn moments for binary and gray-scale images, in 2012 IEEE Int. Conf. Complex Syst. (ICCS), pp. 1–6 (2012)
M. Sayyouri, A. Hmimid, H. Qjidaa, Improving the performance of image classification by Hahn moment invariants. JOSA A 30, 2381–2394 (2013)
M. Sayyouri, A. Hmimid, H. Qjidaa, Image classification using separable discrete moments of Charlier–Tchebichef, in Image Signal Process, ed. by A. Elmoataz, O. Lezoray, F. Nouboud, D. Mammass (Springer, Cham, 2014), pp. 441–449
M. Sayyouri, A. Hmimid, H. Qjidaa, A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Syst. Signal Process. 34, 875–900 (2015)
H. Shu, H. Zhang, B. Chen, P. Haigron, L. Luo, Fast computation of Tchebichef moments for binary and grayscale images. IEEE Trans. Image Process. 19, 3171–3180 (2010)
K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, S. Dickinson, Retrieving articulated 3-D models using medial surfaces. Mach. Vis. Appl. 19, 261–275 (2008)
I.M. Spiliotis, B.G. Mertzios, Fast algorithms for basic processing and analysis operations on block-represented binary images. Pattern Recognit. Lett. 17, 1437–1450 (1996)
M.R. Teague, Image analysis via the general theory of moments. JOSA. 70, 920–930 (1980)
G. Wang, S. Wang, Recursive computation of Tchebichef moment and its inverse transform. Pattern Recognit. 39, 47–56 (2006)
S.-H. Wang, S. Du, Y. Zhang, P. Phillips, L.-N. Wu, X.-Q. Chen, Y.-D. Zhang, Alzheimer’s disease detection by pseudo Zernike moment and linear regression classification. CNS Neurol. Disord.-Drug Targets Former. Curr. Drug Targets-CNS Neurol. Disord. 16, 11–15 (2017)
X. Wang, G. Shi, F. Guo, A comment on “Translation and scale invariants of Tchebichef moments” by Hongqing Zhu Pattern Recognition 40 (2007) 2530–2542. Pattern Recognit. 77, 458–463 (2018)
B. Xiao, G. Lu, Y. Zhang, W. Li, G. Wang, Lossless image compression based on integer Discrete Tchebichef Transform. Neurocomputing 214, 587–593 (2016)
Y. Xu, On discrete orthogonal polynomials of several variables. Adv. Appl. Math. 33, 615–632 (2004)
M. Yamni, A. Daoui, O. El Ogri, H. Karmouni, M. Sayyouri, H. Qjidaa, J. Flusser, Fractional Charlier moments for image reconstruction and image watermarking. Signal Process. 171, 107509 (2020)
M. Yamni, A. Daoui, H. Karmouni, M. Sayyouri, H. Qjidaa, Influence of Krawtchouk and Charlier moment’s parameters on image reconstruction and classification. Procedia Comput. Sci. 148, 418–427 (2019)
B. Yang, J. Kostková, J. Flusser, T. Suk, Scale invariants from Gaussian–Hermite moments. Signal Process. 132, 77–84 (2017)
P.-T. Yap, R. Paramesran, S.-H. Ong, Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2057–2062 (2007)
H. Zhu, M. Liu, H. Shu, H. Zhang, L. Luo, General form for obtaining discrete orthogonal moments. IET Image Process. 4, 335–352 (2010)
H. Zhu, H. Shu, J. Liang, L. Luo, J.-L. Coatrieux, Image analysis by discrete orthogonal Racah moments. Signal Process. 87, 687–708 (2007)
H. Zhu, H. Shu, J. Zhou, L. Luo, J.L. Coatrieux, Image analysis by discrete orthogonal dual Hahn moments. Pattern Recognit. Lett. 28, 1688–1704 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Daoui, A., Yamni, M., Ogri, O.E. et al. New Algorithm for Large-Sized 2D and 3D Image Reconstruction using Higher-Order Hahn Moments. Circuits Syst Signal Process 39, 4552–4577 (2020). https://doi.org/10.1007/s00034-020-01384-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-020-01384-z