Abstract
This paper presents the augmented particle samples based optimal convolutional filters that preserve the appearance model robustness for object tracking in both temporal and spatial levels. In temporal level, augmented particle samples provided by Laplacian group reverse sparse representation exploit the potential geometrical correlation among the different patches that keep the inherent potential distribution which facilitates the update scheme of appearance model between continuous frames in the particle filtering framework. In spatial level, structural information of multi-scale patches extraction can preserve highly stable attributes that significantly improve the object representation robustness in multi-scenarios. Moreover, the optimal convolutional filters that resulted from laplacian score exploits the coherence of high similarity in both positive and negative sets effectively that can guarantee the template update procedures discriminatively. Experimental results demonstrate that the proposed approach achieves better performance on multiple dynamic scenes.
Similar content being viewed by others
References
Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on computer vision and pattern recognition, IEEE, pp 983–990
Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1830–1837
Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer society conference on computer vision and pattern recognition, IEEE, pp 2544–2550
Cai B, Xu X, Xing X, Jia K, Miao J, Tao D (2016) Bit: Biologically inspired tracker. IEEE Trans Image Process 25(3):1327–1339
Cui Z, Xiao S, Feng J, Yan S (2016) Recurrently target-attending tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1449–1458
Dong W, Huchuan L, Ziyang X, Ming-Hsuan Y (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process A Public IEEE Signal Process Soc 24(9):2646
Gao J, Xing J, Hu W, Zhang X (2013) Graph embedding based semi-supervised discriminative tracker. In: Proceedings of the IEEE international conference on computer vision workshops, pp 145–152
Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision, Springer, pp 234–247
HENRIQUESJF CR, et al. (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: European conference on computer vision, Springer, pp 702–715
Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, Torr PH (2015) Struck: Structured output tracking with kernels. IEEE Trans Patt Anal Mach Intel 38(10):2096–2109
He X, Cai D, Niyogi P (2006) Laplacian score for feature selection. In: Advances in neural information processing systems, pp 507–514
Henriques JF, Caseiro R, Martins P, Batista J (2014) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intel 37(3):583–596
Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1822–1829
Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intel 34(7):1409–1422
Kang B, Liang D, Yang Z (2019) Robust visual tracking via global context regularized locality-constrained linear coding. Optik 183:232–240
Li X, Liu Q, Fan N, He Z, Wang H (2019) Hierarchical spatial-aware siamese network for thermal infrared object tracking. Knowl-Based Syst 166:71–81
Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration. In: European conference on computer vision, Springer, pp 254–265
Li C, Zhu C, Zheng S, Luo B, Tang J (2018) Two-stage modality-graphs regularized manifold ranking for rgb-t tracking. Signal Process Image Commun 68:207–217
Liu F, Gong C, Zhou T, Fu K, He X, Yang J (2017) Visual tracking via nonnegative multiple coding. IEEE Trans Multimedia 19(12):2680–2691
Liu B, Huang J, Kulikowski C, Yang L (2012) Robust visual tracking using local sparse appearance model and k-selection. IEEE Trans Pattern Anal Mach Intel 35(12):2968–2981
Liu B, Liu Q, Zhang T, Yang Y (2019) Msstresnet-tld: a robust tracking method based on tracking-learning-detection framework by using multi-scale spatio-temporal residual network feature model. Neurocomputing 362:175–194
Lu X, Yuan Y, Yan P (2013) Robust visual tracking with discriminative sparse learning. Pattern Recogn 46(7):1762–1771
Ma B, Hu H, Shen J, Liu Y, Shao L (2016) Generalized pooling for robust object tracking. IEEE Trans Image Process 25(9):4199–4208
Ma B, Shen J, Liu Y, Hu H, Shao L, Li X (2015) Visual tracking using strong classifier and structural local sparse descriptors. IEEE Trans Multimedia 17(10):1818–1828
Ning J, Yang J, Jiang S, Zhang L, Yang MH (2016) Object tracking via dual linear structured svm and explicit feature map. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4266–4274
Qi Y, Zhang S, Qin L, Yao H, Huang Q, Lim J, Yang MH (2016) Hedged deep tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4303–4311
Rao C, Yao C, Bai X, Qiu W, Liu W (2012) Online random ferns for robust visual tracking. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), IEEE, pp 1447–1450
Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1-3):125–141
Shen W, Wu Y, Yuan J, Duan L, Zhang J, Jia Y (2019) Robust distracter-resistive tracker via learning a multi-component discriminative dictionary. IEEE Trans Circ Syst Video Technol 29(7):2012–2028
Song Y, Ma C, Gong L, Zhang J, Lau RW, Yang MH (2017) Crest: Convolutional residual learning for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 2555–2564
Tang M, Feng J (2015) Multi-kernel correlation filter for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 3038–3046
Wang H, Ge H (2017) Object tracking via inverse sparse representation and convolutional networks. Optik - Int J Light and Elect Opt 138:68–79
Wang L, Ouyang W, Wang X, Lu H (2015) Visual tracking with fully convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 3119–3127
Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEE Conference on computer vision and pattern recognition (CVPR)
Wu Y, Ma B, Yang M, Zhang J, Jia Y (2013) Metric learning based structural appearance model for robust visual tracking. IEEE Trans Circ Syst Video Technol 24(5):865–877
Wu Y, Shen B, Ling H (2012) Online robust image alignment via iterative convex optimization. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1808–1814
Xiao L, Wang H, Hu Z (2018) Visual tracking via adaptive random projection based on sub-regions. IEEE Access 6:41955–41965
Yang X, Wang M, Tao D (2015) Robust visual tracking via multi-graph ranking. Neurocomputing 159:35–43
Yang M, Wu Y, Pei M, Ma B, Jia Y (2015) Online discriminative tracking with active example selection. IEEE Trans Circ Syst Video Technol 26 (7):1279–1292
Yilmaz A, Javed O, Shah M (2006) Object tracking:a survey. ACM Comput Surv 38(4):13
Yun S, Choi J, Yoo Y, Yun K, Choi JY (2018) Action-driven visual object tracking with deep reinforcement learning. IEEE Trans Neural Netw Learn Syst 29(6):2239–2252
Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 2042–2049
Zhang K, Liu Q, Wu Y, Yang MH (2016) Robust visual tracking via convolutional networks without training. IEEE Trans Image Process 25 (4):1779–1792
Zhang S, Lu W, Xing W, Zhang L (2018) Using fuzzy least squares support vector machine with metric learning for object tracking. Pattern Recogn 84:112–125
Zhang L, Varadarajan J, Nagaratnam Suganthan P, Ahuja N, Moulin P (2017) Robust visual tracking using oblique random forests. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5589–5598
Zhang T, Xu C, Yang MH (2018) Robust structural sparse tracking. IEEE Trans Pattern Anal Mach Intel 41(2):473–486
Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: ECCV
Zhang S, Zhou H, Jiang F, Li X (2015) Robust visual tracking using structurally random projection and weighted least squares. IEEE Trans Circ Syst Video Technol 25(11):1749–1760
Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1838–1845
Zhou T, He X, Xie K, Fu K, Zhang J, Yang J (2015) Robust visual tracking via efficient manifold ranking with low-dimensional compressive features. Pattern Recogn 48(8):2459–2473
Zhu Z, Huang G, Zou W, Du D, Huang C (2017) Uct: Learning unified convolutional networks for real-time visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 1973–1982
Zhu L, Miao L, Zhang D (2012) Iterative laplacian score for feature selection. In: Chinese conference on pattern recognition
Acknowledgments
Sincerely thanks to the professor Nongliang Sun and professor Quanquan Liang, who are crucial for the preparation of the article. This study acknowledges the financial support from the ‘Leading Talents of Shandong University of Science and Technology’, ‘863 project Physical Model Based Dynamic Evolution Technology of Complex Scene’ (2015AA016404), ‘Shandong Province Higher Educational Science and Technology Program’ (J17KA075) and ‘National Nature Science Foundation of China’ (61801270).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
An, X., Liang, Q. & Sun, N. Augmented particle samples based optimal convolutional filters for object tracking. Multimed Tools Appl 80, 4473–4491 (2021). https://doi.org/10.1007/s11042-020-09724-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-09724-6