Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Augmented particle samples based optimal convolutional filters for object tracking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents the augmented particle samples based optimal convolutional filters that preserve the appearance model robustness for object tracking in both temporal and spatial levels. In temporal level, augmented particle samples provided by Laplacian group reverse sparse representation exploit the potential geometrical correlation among the different patches that keep the inherent potential distribution which facilitates the update scheme of appearance model between continuous frames in the particle filtering framework. In spatial level, structural information of multi-scale patches extraction can preserve highly stable attributes that significantly improve the object representation robustness in multi-scenarios. Moreover, the optimal convolutional filters that resulted from laplacian score exploits the coherence of high similarity in both positive and negative sets effectively that can guarantee the template update procedures discriminatively. Experimental results demonstrate that the proposed approach achieves better performance on multiple dynamic scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on computer vision and pattern recognition, IEEE, pp 983–990

  2. Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1830–1837

  3. Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer society conference on computer vision and pattern recognition, IEEE, pp 2544–2550

  4. Cai B, Xu X, Xing X, Jia K, Miao J, Tao D (2016) Bit: Biologically inspired tracker. IEEE Trans Image Process 25(3):1327–1339

    Article  MathSciNet  Google Scholar 

  5. Cui Z, Xiao S, Feng J, Yan S (2016) Recurrently target-attending tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1449–1458

  6. Dong W, Huchuan L, Ziyang X, Ming-Hsuan Y (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process A Public IEEE Signal Process Soc 24(9):2646

    Article  MathSciNet  Google Scholar 

  7. Gao J, Xing J, Hu W, Zhang X (2013) Graph embedding based semi-supervised discriminative tracker. In: Proceedings of the IEEE international conference on computer vision workshops, pp 145–152

  8. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision, Springer, pp 234–247

  9. HENRIQUESJF CR, et al. (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: European conference on computer vision, Springer, pp 702–715

  10. Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, Torr PH (2015) Struck: Structured output tracking with kernels. IEEE Trans Patt Anal Mach Intel 38(10):2096–2109

    Article  Google Scholar 

  11. He X, Cai D, Niyogi P (2006) Laplacian score for feature selection. In: Advances in neural information processing systems, pp 507–514

  12. Henriques JF, Caseiro R, Martins P, Batista J (2014) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intel 37(3):583–596

    Article  Google Scholar 

  13. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1822–1829

  14. Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intel 34(7):1409–1422

    Article  Google Scholar 

  15. Kang B, Liang D, Yang Z (2019) Robust visual tracking via global context regularized locality-constrained linear coding. Optik 183:232–240

    Article  Google Scholar 

  16. Li X, Liu Q, Fan N, He Z, Wang H (2019) Hierarchical spatial-aware siamese network for thermal infrared object tracking. Knowl-Based Syst 166:71–81

    Article  Google Scholar 

  17. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration. In: European conference on computer vision, Springer, pp 254–265

  18. Li C, Zhu C, Zheng S, Luo B, Tang J (2018) Two-stage modality-graphs regularized manifold ranking for rgb-t tracking. Signal Process Image Commun 68:207–217

    Article  Google Scholar 

  19. Liu F, Gong C, Zhou T, Fu K, He X, Yang J (2017) Visual tracking via nonnegative multiple coding. IEEE Trans Multimedia 19(12):2680–2691

    Article  Google Scholar 

  20. Liu B, Huang J, Kulikowski C, Yang L (2012) Robust visual tracking using local sparse appearance model and k-selection. IEEE Trans Pattern Anal Mach Intel 35(12):2968–2981

    Article  Google Scholar 

  21. Liu B, Liu Q, Zhang T, Yang Y (2019) Msstresnet-tld: a robust tracking method based on tracking-learning-detection framework by using multi-scale spatio-temporal residual network feature model. Neurocomputing 362:175–194

    Article  Google Scholar 

  22. Lu X, Yuan Y, Yan P (2013) Robust visual tracking with discriminative sparse learning. Pattern Recogn 46(7):1762–1771

    Article  Google Scholar 

  23. Ma B, Hu H, Shen J, Liu Y, Shao L (2016) Generalized pooling for robust object tracking. IEEE Trans Image Process 25(9):4199–4208

    MathSciNet  MATH  Google Scholar 

  24. Ma B, Shen J, Liu Y, Hu H, Shao L, Li X (2015) Visual tracking using strong classifier and structural local sparse descriptors. IEEE Trans Multimedia 17(10):1818–1828

    Article  Google Scholar 

  25. Ning J, Yang J, Jiang S, Zhang L, Yang MH (2016) Object tracking via dual linear structured svm and explicit feature map. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4266–4274

  26. Qi Y, Zhang S, Qin L, Yao H, Huang Q, Lim J, Yang MH (2016) Hedged deep tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4303–4311

  27. Rao C, Yao C, Bai X, Qiu W, Liu W (2012) Online random ferns for robust visual tracking. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), IEEE, pp 1447–1450

  28. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1-3):125–141

    Article  Google Scholar 

  29. Shen W, Wu Y, Yuan J, Duan L, Zhang J, Jia Y (2019) Robust distracter-resistive tracker via learning a multi-component discriminative dictionary. IEEE Trans Circ Syst Video Technol 29(7):2012–2028

    Article  Google Scholar 

  30. Song Y, Ma C, Gong L, Zhang J, Lau RW, Yang MH (2017) Crest: Convolutional residual learning for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 2555–2564

  31. Tang M, Feng J (2015) Multi-kernel correlation filter for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 3038–3046

  32. Wang H, Ge H (2017) Object tracking via inverse sparse representation and convolutional networks. Optik - Int J Light and Elect Opt 138:68–79

    Article  Google Scholar 

  33. Wang L, Ouyang W, Wang X, Lu H (2015) Visual tracking with fully convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 3119–3127

  34. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEE Conference on computer vision and pattern recognition (CVPR)

  35. Wu Y, Ma B, Yang M, Zhang J, Jia Y (2013) Metric learning based structural appearance model for robust visual tracking. IEEE Trans Circ Syst Video Technol 24(5):865–877

    Article  Google Scholar 

  36. Wu Y, Shen B, Ling H (2012) Online robust image alignment via iterative convex optimization. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1808–1814

  37. Xiao L, Wang H, Hu Z (2018) Visual tracking via adaptive random projection based on sub-regions. IEEE Access 6:41955–41965

    Article  Google Scholar 

  38. Yang X, Wang M, Tao D (2015) Robust visual tracking via multi-graph ranking. Neurocomputing 159:35–43

    Article  Google Scholar 

  39. Yang M, Wu Y, Pei M, Ma B, Jia Y (2015) Online discriminative tracking with active example selection. IEEE Trans Circ Syst Video Technol 26 (7):1279–1292

    Article  Google Scholar 

  40. Yilmaz A, Javed O, Shah M (2006) Object tracking:a survey. ACM Comput Surv 38(4):13

    Article  Google Scholar 

  41. Yun S, Choi J, Yoo Y, Yun K, Choi JY (2018) Action-driven visual object tracking with deep reinforcement learning. IEEE Trans Neural Netw Learn Syst 29(6):2239–2252

    Article  MathSciNet  Google Scholar 

  42. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 2042–2049

  43. Zhang K, Liu Q, Wu Y, Yang MH (2016) Robust visual tracking via convolutional networks without training. IEEE Trans Image Process 25 (4):1779–1792

    MathSciNet  MATH  Google Scholar 

  44. Zhang S, Lu W, Xing W, Zhang L (2018) Using fuzzy least squares support vector machine with metric learning for object tracking. Pattern Recogn 84:112–125

    Article  Google Scholar 

  45. Zhang L, Varadarajan J, Nagaratnam Suganthan P, Ahuja N, Moulin P (2017) Robust visual tracking using oblique random forests. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5589–5598

  46. Zhang T, Xu C, Yang MH (2018) Robust structural sparse tracking. IEEE Trans Pattern Anal Mach Intel 41(2):473–486

    Article  Google Scholar 

  47. Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: ECCV

  48. Zhang S, Zhou H, Jiang F, Li X (2015) Robust visual tracking using structurally random projection and weighted least squares. IEEE Trans Circ Syst Video Technol 25(11):1749–1760

    Article  Google Scholar 

  49. Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model. In: 2012 IEEE Conference on computer vision and pattern recognition, IEEE, pp 1838–1845

  50. Zhou T, He X, Xie K, Fu K, Zhang J, Yang J (2015) Robust visual tracking via efficient manifold ranking with low-dimensional compressive features. Pattern Recogn 48(8):2459–2473

    Article  Google Scholar 

  51. Zhu Z, Huang G, Zou W, Du D, Huang C (2017) Uct: Learning unified convolutional networks for real-time visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 1973–1982

  52. Zhu L, Miao L, Zhang D (2012) Iterative laplacian score for feature selection. In: Chinese conference on pattern recognition

Download references

Acknowledgments

Sincerely thanks to the professor Nongliang Sun and professor Quanquan Liang, who are crucial for the preparation of the article. This study acknowledges the financial support from the ‘Leading Talents of Shandong University of Science and Technology’, ‘863 project Physical Model Based Dynamic Evolution Technology of Complex Scene’ (2015AA016404), ‘Shandong Province Higher Educational Science and Technology Program’ (J17KA075) and ‘National Nature Science Foundation of China’ (61801270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanquan Liang or Nongliang Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Liang, Q. & Sun, N. Augmented particle samples based optimal convolutional filters for object tracking. Multimed Tools Appl 80, 4473–4491 (2021). https://doi.org/10.1007/s11042-020-09724-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09724-6

Keywords

Navigation