Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visual Tracking in Continuous Appearance Space via Sparse Coding

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

  • 3622 Accesses

Abstract

Particle Filter is the most widely used framework for object tracking. Despite its advantages in handling complex cases, the discretization of the object appearance space makes it difficult to search the solution efficiently, and the number of particles is also greatly limited in consideration of computational cost, especially for some time-consuming object representations, e.g. sparse representation. In this paper, we propose a novel tracking method in which the appearance space is relaxed to be continuous, the solution then can be searched efficiently via sparse coding iteratively. As particle filter, our method can be combined with many generic tracking methods; typically, we adopt ℓ1 tracker, and demonstrate that with our method both its efficiency and accuracy can be improved in comparison to the version based on particle filter. Another advantage of our method is that it can handle dynamic change of object appearance by adaptively updating the object template model using the learned dictionary, and at the same time can avoid drifting by using representation error for supervision. Our method thus can perform more robust than previous methods in dynamic scenes of gradual changes. Both qualitative and quantitative evaluations demonstrate the efficiency and robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adam, A., Rivlin, E., Shimshini, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)

    Google Scholar 

  2. Babenko, B., Yang, M.H.: Visual tracking with online multiple instance learning. In: CVPR (2009)

    Google Scholar 

  3. Bao, C., Wu, Y., Ling, H., Ji, H.: Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach. In: CVPR (2012)

    Google Scholar 

  4. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: CVPR, pp. 142–149 (2000)

    Google Scholar 

  5. Collins, R.T., Liu, Y.: On-Line Selection of Discriminative Tracking Features. In: ICCV, pp. 346–352 (2003)

    Google Scholar 

  6. Grabner, H., Bischof, H.: On-Line boosting and vision. In: CVPR (2006)

    Google Scholar 

  7. Isard, M., Blake, A.: Condensation-Conditional Density Propagation for Visual Tracking. IJCV, 5–28 (1998)

    Google Scholar 

  8. Li, H., Shen, C., Shi, Q.: Real-time Visual Tracking Using Compressive Sensing. In: CVPR, pp. 1305–1312 (2011)

    Google Scholar 

  9. Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 624–637. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Dictionary Learning for Sparse Coding. In: ICML (2009)

    Google Scholar 

  11. Mei, X., Ling, H.: Robust Visual Tracking using ℓ1 Minimization. In: ICCV, pp. 1436–1443 (2009)

    Google Scholar 

  12. Mei, X., Ling, H.: Minimum Error Bounded Efficient ℓ1 Tracker with Occlusion Detection. In: CVPR, pp. 1257–1264 (2011)

    Google Scholar 

  13. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)

    Google Scholar 

  14. Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on lie algebra. In: CVPR, pp. 728–735 (2006)

    Google Scholar 

  15. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental Learning for Robust Visual Tracking. IJCV, 125–141 (2008)

    Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 267–288 (1996)

    Google Scholar 

  17. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. PAMI, 210–227 (2009)

    Google Scholar 

  18. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear Spatial Pyramid Matching Using Sparse Coding. In: CVPR, pp. 1794–1801 (2009)

    Google Scholar 

  19. Zhou, S.K., Chellappa, R., Moghaddam, B.: Visual Tracking and Recognition Using Appearance Adaptive Models in Particle Filters. TIP, 1491–1506 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, G., Zhong, F., Liu, Y., Peng, Q., Qin, X. (2013). Visual Tracking in Continuous Appearance Space via Sparse Coding. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics