Abstract
Particle Filter is the most widely used framework for object tracking. Despite its advantages in handling complex cases, the discretization of the object appearance space makes it difficult to search the solution efficiently, and the number of particles is also greatly limited in consideration of computational cost, especially for some time-consuming object representations, e.g. sparse representation. In this paper, we propose a novel tracking method in which the appearance space is relaxed to be continuous, the solution then can be searched efficiently via sparse coding iteratively. As particle filter, our method can be combined with many generic tracking methods; typically, we adopt ℓ1 tracker, and demonstrate that with our method both its efficiency and accuracy can be improved in comparison to the version based on particle filter. Another advantage of our method is that it can handle dynamic change of object appearance by adaptively updating the object template model using the learned dictionary, and at the same time can avoid drifting by using representation error for supervision. Our method thus can perform more robust than previous methods in dynamic scenes of gradual changes. Both qualitative and quantitative evaluations demonstrate the efficiency and robustness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adam, A., Rivlin, E., Shimshini, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)
Babenko, B., Yang, M.H.: Visual tracking with online multiple instance learning. In: CVPR (2009)
Bao, C., Wu, Y., Ling, H., Ji, H.: Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach. In: CVPR (2012)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: CVPR, pp. 142–149 (2000)
Collins, R.T., Liu, Y.: On-Line Selection of Discriminative Tracking Features. In: ICCV, pp. 346–352 (2003)
Grabner, H., Bischof, H.: On-Line boosting and vision. In: CVPR (2006)
Isard, M., Blake, A.: Condensation-Conditional Density Propagation for Visual Tracking. IJCV, 5–28 (1998)
Li, H., Shen, C., Shi, Q.: Real-time Visual Tracking Using Compressive Sensing. In: CVPR, pp. 1305–1312 (2011)
Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 624–637. Springer, Heidelberg (2010)
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Dictionary Learning for Sparse Coding. In: ICML (2009)
Mei, X., Ling, H.: Robust Visual Tracking using ℓ1 Minimization. In: ICCV, pp. 1436–1443 (2009)
Mei, X., Ling, H.: Minimum Error Bounded Efficient ℓ1 Tracker with Occlusion Detection. In: CVPR, pp. 1257–1264 (2011)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)
Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on lie algebra. In: CVPR, pp. 728–735 (2006)
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental Learning for Robust Visual Tracking. IJCV, 125–141 (2008)
Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 267–288 (1996)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. PAMI, 210–227 (2009)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear Spatial Pyramid Matching Using Sparse Coding. In: CVPR, pp. 1794–1801 (2009)
Zhou, S.K., Chellappa, R., Moghaddam, B.: Visual Tracking and Recognition Using Appearance Adaptive Models in Particle Filters. TIP, 1491–1506 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, G., Zhong, F., Liu, Y., Peng, Q., Qin, X. (2013). Visual Tracking in Continuous Appearance Space via Sparse Coding. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-37431-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37430-2
Online ISBN: 978-3-642-37431-9
eBook Packages: Computer ScienceComputer Science (R0)