Abstract
Robust models have a major role in portfolio optimization for resolving the sensitivity issue of the classical mean–variance model. In this paper, we survey developments of worst-case optimization while focusing on approaches for constructing robust portfolios. In addition to the robust formulations for the Markowitz model, we review work on deriving robust counterparts for value-at-risk and conditional value-at-risk problems as well as methods for combining uncertainty in factor models. Recent findings on properties of robust portfolios are introduced, and we conclude by presenting our thoughts on future research directions.
Similar content being viewed by others
Notes
Here the uncertainty of the covariance matrix is represented as a set \(\mathcal{U} _{\varSigma}\), but a factor model approach is used in the original work for defining the uncertainty set. This is further described in Sect. 6.
Stubbs and Vance [28] cover ways to empirically approximate the matrix Σ μ .
Fabozzi, Huang, and Zhou [34] also provide a comprehensive review on methods for minimizing worst-case VaR and CVaR.
In our definition, we solve for probability at most 1−ε, instead of ε to be consistent with formulations discussed in the following sections.
Natarajan, Pachamanova, and Sim [44] introduce a more general approach for computing the worst-case CVaR when the moments of a distribution are given.
They show that this problem can be formulated as a linear programming problem and Bertsimas, Pachamanova, and Sim [52] provide argument that this uncertainty set is a special case of the norm defined as the D-norm.
To increase the scale of the uncertainty set, they actually test with several point estimates and deviation parameters in addition to a scaling factor.
While their analysis is performed at the portfolio-level, Kim, Kim, and Fabozzi [58] investigate the composition of robust equity portfolios to also confirm that robust portfolios have higher portfolio beta compared to the classical mean–variance model. Kim, Kim, and Fabozzi also conclude that robust optimization forms portfolios that are less diversified but more conservative by allocating less to each stock.
References
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)
Black, F., Litterman, R.: Global portfolio optimization. Financ. Anal. J. 48(5), 28–43 (1992)
Michaud, R.O.: The Markowitz optimization enigma: is “optimized” optimal? Financ. Anal. J. 45, 31–42 (1989)
Broadie, M.: Computing efficient frontiers using estimated parameters. Ann. Oper. Res. 45(1), 21–58 (1993)
Chopra, V.K., Ziemba, W.T.: The effect of errors in means, variances, and covariances on optimal portfolio choice. J. Portf. Manag. 19(2), 6–11 (1993)
Best, M.J., Grauer, R.R.: On the sensitivity of mean–variance-efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financ. Stud. 4(2), 315–342 (1991)
Best, M.J., Grauer, R.R.: Sensitivity analysis for mean–variance portfolio problems. Manag. Sci. 37(8), 980–989 (1991)
Ceria, S., Stubbs, R.A.: Incorporating estimation errors into portfolio selection: portfolio construction. J. Asset Manag. 7, 109–127 (2006)
Scherer, B.: Can robust portfolio optimization help to build better portfolios? J. Asset Manag. 7(6), 374–387 (2007)
Santos, A.A.P.: The out-of-sample performance of robust portfolio optimization. Braz. Rev. Finance 8(2), 141–166 (2010)
Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
Fabozzi, F.J., Kolm, P.N., Pachamanova, D.A., Focardi, S.M.: Robust Portfolio Optimization and Management. Wiley, Hoboken (2007)
Soyster, A.L.: Convex programming with set-inclusive constraints and application to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)
El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)
El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9, 33–52 (1998)
Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)
Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)
Goldfarb, D., Iyengar, G.: Robust convex quadratically constrained programming. Math. Program. 97, 495–515 (2003)
Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)
Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robustness Optimization. Princeton University Press, Princeton (2009)
Lobo, M.S., Boyd, S.: The worst-case risk of a portfolio. Technical report, Stanford University (2000). http://www.stanford.edu/~boyd/papers/pdf/risk_bnd.pdf
Halldórsson, B.V., Tütüncü, R.H.: An interior-point method for a class of saddle-point problems. J. Optim. Theory Appl. 116(3), 559–590 (2003)
Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)
Tütüncü, R.H., Koenig, M.: Robust asset allocation. Ann. Oper. Res. 132, 157–187 (2004)
Costa, O.L.V., Paiva, A.C.: Robust portfolio selection using linear-matrix inequalities. J. Econ. Dyn. Control 26(6), 889–909 (2002)
Fabozzi, F.J., Kolm, P.N., Pachamanova, D.A., Focardi, S.M.: Robust portfolio optimization. J. Portf. Manag. 33, 40–48 (2007)
Stubbs, R.A., Vance, P.: Computing Return Estimation Error Matrices for Robust Optimization. Axioma, Inc., New York (2005)
Lu, Z.: A new cone programming approach for robust portfolio selection. Technical report, Department of Mathematics, Simon Fraser University, Burnaby, BC (2006)
Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)
Lu, Z.: Robust portfolio selection based on a joint ellipsoidal uncertainty set. Optim. Methods Softw. 26(1), 89–104 (2011)
Lu, Z.: A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set. Math. Program. 126, 193–201 (2011)
El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)
Fabozzi, F.J., Huang, D., Zhou, G.: Robust portfolios: contributions from operations research and finance. Ann. Oper. Res. 176, 191–220 (2010)
Natarajan, K., Pachamanova, D., Sim, M.: Incorporating asymmetric distributional information in robust value-at-risk optimization. Manag. Sci. 54(3), 573–585 (2008)
Chen, X., Sim, M., Sun, P.: A robust optimization perspective on stochastic programming. Oper. Res. 55(6), 1058–1071 (2007)
Huang, D., Fabozzi, F.J., Fukushima, M.: Robust portfolio selection with uncertain exit time using worst-case VaR strategy. Oper. Res. Lett. 35, 627–635 (2007)
Rockafeller, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)
Rockafeller, R.T., Uryasev, S.: Conditional value-at-risk for general loss distribution. J. Bank. Finance 26(7), 1443–1471 (2002)
Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)
Zhu, S., Fukushima, M.: Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 57(5), 1155–1168 (2009)
Huang, D., Zhu, S., Fabozzi, F.J., Fukushima, M.: Portfolio selection with uncertain exit time: a robust CVaR approach. J. Econ. Dyn. Control 32, 594–623 (2007)
Huang, D., Zhu, S., Fabozzi, F.J., Fukushima, M.: Portfolio selection under distributional uncertainty: a relative robust CVaR approach. Eur. J. Oper. Res. 203, 185–194 (2010)
Natarajan, K., Pachamanova, D., Sim, M.: Constructing risk measures from uncertainty sets. Oper. Res. 57(5), 1129–1141 (2009)
Ma, X., Zhao, Q., Qu, J.: Robust portfolio optimization with a generalized expected utility model under ambiguity. Ann. Finance 4, 431–444 (2008)
Garlappi, L., Uppal, R., Wang, T.: Portfolio selection with parameter and model uncertainty: a multi-prior approach. Rev. Financ. Stud. 20(1), 41–81 (2007)
Ruan, K., Fukushima, M.: Robust portfolio selection with a combined WCVaR and factor model. Technical report, Department of Applied Mathematics and Physics, Kyoto University, Kyoto, Japan (2011)
Fama, E.F., French, K.R.: Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33(1), 3–56 (1993)
Pflug, G., Wozabal, D.: Ambiguity in portfolio selection. Quant. Finance 7(4), 435–442 (2007)
Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
Gregory, C., Darby-Dowman, K., Mitra, G.: Robust optimization and portfolio selection: the cost of robustness. Eur. J. Oper. Res. 212, 417–428 (2011)
Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32, 510–516 (2004)
Gülpinar, N., Katata, K., Pachamanova, D.: Robust portfolio allocation under discrete asset choice constraints. J. Asset Manag. 12(1), 67–83 (2011)
Kim, W.C., Kim, J.H., Fabozzi, F.J.: Deciphering robust portfolios. Working paper (2012)
Kim, W.C., Kim, J.H., Ahn, S.H., Fabozzi, F.J.: What do robust equity portfolio models really do? Ann. Oper. Res. 205(1), 141–168 (2013)
Kim, W.C., Kim, J.H., Mulvey, J.M., Fabozzi, F.J.: Focusing on the worst state for robust investing. Working paper (2013)
Kim, W.C., Kim, M.J., Kim, J.H., Fabozzi, F.J.: Robust portfolios that do not tilt factor exposure. Eur. J. Oper. Res. (2013). doi:10.1016/j.ejor.2013.03.029
Kim, J.H., Kim, W.C., Fabozzi, F.J.: Composition of robust equity portfolios. Finance Res. Lett. (2013). doi:10.1016/j.frl.2013.02.001
Ben-Tal, A., Margalit, T., Nemirovski, A.: Robust modeling of multi-stage portfolio problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High Performance Optimization, pp. 303–328. Kluwer Academic, Dordrecht (2000)
Dantzig, G.B., Infanger, G.: Multi-stage stochastic linear programs for portfolio optimization. Ann. Oper. Res. 45, 59–76 (1993)
Bertsimas, D., Pachamanova, D.: Robust multiperiod portfolio management in the presence of transaction cost. Comput. Oper. Res. 35, 3–17 (2008)
Acknowledgments
The authors are grateful for the suggestions of the anonymous referees and for the support by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2012R1A1A1011157).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, J.H., Kim, W.C. & Fabozzi, F.J. Recent Developments in Robust Portfolios with a Worst-Case Approach. J Optim Theory Appl 161, 103–121 (2014). https://doi.org/10.1007/s10957-013-0329-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0329-1