Abstract
In this paper we provide a survey of recent contributions to robust portfolio strategies from operations research and finance to the theory of portfolio selection. Our survey covers results derived not only in terms of the standard mean-variance objective, but also in terms of two of the most popular risk measures, mean-VaR and mean-CVaR developed recently. In addition, we review optimal estimation methods and Bayesian robust approaches.
Similar content being viewed by others
References
Ahn, D. H., Boudoukh, J., Richardson, M., & Whitelaw, R. F. (1999). Optimal risk management using options. Journal of Finance, 54, 359–375.
Aït-Sahalia, Y., & Brandt, M. W. (2001). Variable selection for portfolio choice. Journal of Finance, 56, 1297–1351.
Alexander, G. J., & Baptista, A. M. (2002). Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. Journal of Economic Dynamics and Control, 26, 1159–1193.
Alexander, G. J., & Baptista, A. M. (2004). A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Management Science, 50, 1261–1273.
Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd ed.). New York: Wiley.
Ang, A., Bekaert, G., & Liu, J. (2005). Why stocks may disappoint. Journal of Financial Economics, 76, 471–508.
Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.
Avramov, D. (2004). Stock predictability and asset pricing models. Review of Financial Studies, 17(3), 699–738.
Barberis, N. (2000). Investing for the long run when returns are predictable. Journal of Finance, 55, 225–264.
Basak, S., & Shapiro, A. (2001). Value-at-risk management: optimal policies and asset prices. Review of Financial Studies, 14, 371–405.
Bawa, V. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2, 95–121.
Bawa, V. S., Brown, S. J., & Klein, R. W. (1979). Estimation risk and optimal portfolio choice. Amsterdam: North-Holland.
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23, 769–805.
Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25, 1–13.
Ben-Tal, A., Margalit, T., & Nemirovski, A. N. (2002). Robust modeling of multi-stage portfolio problems. In H. Frenk, K. Roos, T. Terlaky, & S. Zhang (Eds.), High performance optimization (pp. 303–328). Dordrecht: Kluwer.
Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer.
Best, M. J., & Grauer, R. R. (1991). On the sensitivity of mean-variance efficient portfolios to changes in asset means: some analytical and computational results. Review of Financial Studies, 4(2), 315–342.
Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48, 28–43.
Boyle, P. P., Siu, T. K., & Yang, H. (2002). Risk and probability measures. Risk, 15(7), 53–57.
Brandt, M. W. (2004, forthcoming). Portfolio choice problems. Handbook of financial econometrics, Ait-Sahalia, Y. & L. P. Hansen (Eds.).
Broadie, M. (1993). Computing efficient frontiers using estimated parameters. Annals of Operations Research, 45, 21–58.
Brown, S. J. (1976). Optimal portfolio choice under uncertainty. Ph.D. dissertation, University of Chicago.
Brown, S. J. (1978). The portfolio choice problem: comparison of certainty equivalence and optimal Bayes portfolios. Communications in Statistics—Simulation and Computation, 7, 321–334.
Brown, D. B., & Sim, M. (2008, forthcoming). Satisfying measures for analysis of risky positions. Management Science.
Calafiore, G. C. (2007). Ambiguous risk measures and optimal robust portfolios. SIAM Journal on Optimization, 18(3), 853–877.
Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfolio selection: robust portfolio construction. Journal of Asset Management, 7(2), 109–127.
Chincarini, L. B., & Kim, D. (2006). Quantitative equity portfolio management. New York: McGraw-Hill.
Chopra, V. K., & Ziemba, W. T. (1993). The effects of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6–11.
Costa, O. L. V., & Paiva, A. C. (2002). Robust portfolio selection using linear-matrix inequalities. Journal of Economic Dynamics and Control, 26(6), 889–909.
Cremers, K. J. M. (2002). Stock return predictability: a Bayesian model selection perspective. Review of Financial Studies, 15(4), 1223–1249.
Delage, E., & Ye, Y. (2008, forthcoming). Distributionally robust optimization under moment uncertainty with application to data-driven problems. Operations Research.
Dembo, R., & Rosen, D. (2000). The practice of portfolio replication. Algo Research Quarterly, 3(2), 11–22.
DeMiguel, V., & Nogales, F. J. (2008, forthcoming). Portfolio selection with robust estimation. Operations Research.
DeMiguel, V., Garlappi, L., & Uppal, R. (2008, forthcoming). Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Review of Financial Studies.
Duchin, D., & Levy, H. (2009, forthcoming). Markowitz versus the Talmudic portfolio diversification strategies. Journal of Portfolio Management.
El Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 18, 1035–1064.
El Ghaoui, L., Oks, M., & Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Operations Research, 51, 543–556.
Elliott, R. J., & Siu, T. K. (2008, forthcoming). On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy. Annals of Operations Research.
Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin: Springer.
Fabozzi, F. J., Gupta, F., & Markowitz, H. M. (2002). The legacy of modern portfolio theory. Journal of Investing, 11(3), 7–22.
Fabozzi, F., Focardi, S. M., & Kolm, P. N. (2006). Incorporating trading strategies in the Black-Litterman framework. Journal of Trading, Spring, 28–36.
Fabozzi, F. J., Kolm, P. N., Pachamanova, D., & Focardi, S. M. (2007). Robust portfolio optimization and management. Hoboken: Wiley.
Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics, 6(4), 429–447.
Föllmer, H., Schied, A., & Weber, S. (2008). A robust preference and robust portfolio choice, Preprint.
Frittelli, M., & Rosazza Gianin, E. (2002). Putting order in risk measures. Journal of Banking and Finance, 26(7), 1473–1486.
Garlappi, L., Uppal, R., & Wang, T. (2007). Portfolio selection with parameter and model uncertainty: a multi-prior approach. Review of Financial Studies, 20(1), 41–81.
Goldfarb, D., & Iyengar, G. (2003a). Robust convex quadratically constrained programs. Mathematical Programming, 97, 495–515.
Goldfarb, D., & Iyengar, G. (2003b). Robust portfolio selection problems. Mathematics of Operations Research, 28, 1–38.
Grinold, R. C., & Kahn, R. N. (2000). Active portfolio management (2nd ed.). New York: McGraw-Hill.
Guidolin, M., & Timmermann, A. (2008). International asset allocation under regime switching, skew and kurtosis preferences. Review of Financial Studies, 21(2), 889–935.
Gul, F. (1991). A theory of disappointment aversion. Econometrica, 59(3), 667–686.
Hall, J. A., Brorsen, B. W., & Irwin, S. H. (1989). The distribution of futures prices: a test of the stable Paretian and mixture of normals hypothesis. Journal of Financial and Quantitative Analysis, 24, 105–116.
Hansen, L. P., & Sargent, T. J. (2008). Robustness. Princeton: Princeton University Press.
Harvey, C. R., Liechty, J., Liechty, M., & Müller, P. (2003). Portfolio selection with higher moments. Working Paper, Duke University.
Holton, G. (1997). Subjective value-at-risk. Financial Engineering News, August.
Hong, Y., Tu, J., & Zhou, G. (2007). Asymmetries in stock returns: statistical tests and economic evaluation. Review of Financial Studies, 20, 1547–1581.
Huang, D., Zhu, S. S., Fabozzi, F. J., & Fukushima, M. (2008). Portfolio selection with uncertain exit time: a robust CVaR approach. Journal of Economic Dynamics and Control, 32(2), 594–623.
Huber, R. J. (2003). Robust statistics. New York: Wiley.
Jobson, J. D., & Korkie, B. (1980). Estimation for Markowitz efficient portfolios. Journal of the American Statistical Association, 75, 544–554.
Jobson, J. D., Korkie, B., & Ratti, V. (1979). Improved estimation for Markowitz portfolios using James-Stein type estimators. Proceedings of the American Statistical Association, Business and Economics Statistics Section, 41, 279–284.
Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21, 279–292.
Jorion, P. (1991). Bayesian and CAPM estimators of the means: implications for portfolio selection. Journal of Banking and Finance, 15, 717–727.
Jorion, P. (2006). Value-at-risk: the new benchmark for managing financial risk (3rd ed.). New York: McGraw-Hill.
Kacperczyk, M. (2007). Asset allocation under distribution uncertainty. Working paper, University of British Columbia.
Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42, 621–656.
Kandel, S., & Stambaugh, R. F. (1996). On the predictability of stock returns: an asset-allocation perspective. Journal of Finance, 51, 385–424.
Klein, R. W., & Bawa, V. S. (1976). The effect of estimation risk on optimal portfolio choice. Journal of Financial Economics, 3, 215–231.
Kleshchelskiy, I., & Vincentz, N. (2007). Robust equilibrium yield curves. Working paper, Washington University.
Knight, F. (1921). Risk, uncertainty and profit. Boston: Houghton Mifflin.
Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37, 519–531.
Konno, H., & Koshizuka, T. (2005). Mean-absolute deviation model. IIE Transactions, 37, 893–900.
Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603–621.
Litterman, B. (2003). Modern investment management: an equilibrium approach. New York: Wiley.
Lutgens, F. (2004). Robust portfolio optimization. Ph.D. dissertation, University of Maastricht.
Lutgens, F., & Schotman, P. (2006). Robust portfolio optimization with multiple experts. Working paper, University of Maastricht.
Maccheroni, F., Marinacci, M., & Rustichini, A. (2006). Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica, 74(6), 1447–1498.
MacKinlay, A. C., & Pástor, L̆. (2000). Asset pricing models: implications for expected returns and portfolio selection. Review of Financial Studies, 13, 883–916.
Maenhout, P. J. (2004). Robust portfolio rules and asset pricing. Review of Financial Studies, 17, 951–983.
Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.
Markowitz, H. M. (1959). Portfolio selection: efficient diversification of investments. New Jersey: Wiley.
Maronna, R. A., Martin, D. R., & Yohai, V. J. (2006). Robust statistics: theory and methods. New York: Wiley.
Merton, R. (2003). Thoughts on the future: theory and practice of investment management. Financial Analyst Journal, 59(1), 17–23.
Meucci, A. (2005). Risk and asset allocation. Berlin: Springer.
Mori, H. (2004). Finite sample properties of estimators for the optimal portfolio weight. Journal of Japan Statistical Society, 34, 27–46.
Natarajan, K., Pachamanova, D., & Sim, M. (2008a). Incorporating asymmetric distribution information in robust value-at-risk optimization. Management Science, 54(3), 573–585.
Natarajan, K., Sim, M., & Uichanco, J. (2008b). Tractable robust expected utility and risk models for portfolio optimization, Working paper, National University of Singapore.
Natarajan, K., Pachamanova, D., & Sim, M. (2009, forthcoming). Constructing risk measures from uncertainty sets. Operations Research.
Ortobelli, S., Rachev, S. T., Stoyanov, S., Fabozzi, F. J., & Biglova, A. (2005). The proper use of risk measures in portfolio theory. International Journal of Theoretical and Applied Finance, 8(8), 1107–1133.
Pástor, L̆. (2000). Portfolio selection and asset pricing models. Journal of Finance, 55, 179–223.
Pástor, L̆., & Stambaugh, R. F. (2000). Comparing asset pricing models: an investment perspective. Journal of Financial Economics, 56, 335–381.
Peel, D., & McLachlan, G. J. (2000). Robust mixture modeling using the t distribution. Statistics and Computing, 10, 339–348.
Pinar, M. C. (2007). Robust scenario optimization based on downside-risk measure for multi-period portfolio selection. OR Spectrum, 29(2), 295–309.
Pinar, M. C., & Tütüncü, R. (2005). Robust profit opportunities in risk financial portfolios. Operations Research Letters, 33(4), 331–340.
Popescu, I. (2007). Robust mean-covariance solutions for stochastic optimization. Operations Research, 55(1), 98–112.
Qian, E., Hua, R., & Sorensen, E. (2007). Quantitative equity portfolio management: modern techniques and applications. New York: Chapman & Hall.
Rachev, S. T., Ortobelli, S., Stoyanov, S., Fabozzi, F. J., & Biglova, A. (2008a). Desirable properties of an ideal risk measure in portfolio theory. International Journal of Theoretical and Applied Finance, 11(1), 19–54.
Rachev, S. T., Hsu, J. S. J., Bagasheva, B. S., & Fabozzi, F. J. (2008b). Bayesian methods in finance. New Jersey: Wiley.
Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41.
Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7), 1443–1471.
Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006). Optimality conditions in portfolio analysis with generalized deviation measures. Mathematical Programming, 108, 515–540.
Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.
Rustem, B., Becker, R. G., & Marty, W. (2000). Robust min-max portfolio strategies for rival forecast and risk scenarios. Journal of Economic Dynamics and Control, 24, 1591–1621.
Shen, R., & Zhang, S. (2008). Robust portfolio selection based on a multi-stage scenario tree. European Journal of Operational Research, 191(3), 864–887.
Siu, T. K., Tong, H., & Yang, H. (2001). Bayesian risk measures for derivatives via random Esscher transform. North American Actuarial Journal, 5(3), 78–91.
Stambaugh, R. F. (1997). Analyzing investments whose histories differ in length. Journal of Financial Economics, 45, 285–331.
Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the third Berkeley symposium on mathematical statistics and probability (vol. 1, pp. 197–206). Berkeley: University of California Press.
Steinbach, M. C. (2001). Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM Review, 43(1), 31–85.
Stoyanov, S. V., Rachev, S. T., & Fabozzi, F. J. (2007). Optimal financial portfolios. Applied Mathematical Finance, 14(5), 403–438.
Strzalecki, T. (2008). Axiomatic foundations of multiplier preferences. Working paper, Harvard University.
Ter Horst, J., De Roon, F., & Werker, B. (2006), Incorporating estimation risk in portfolio choice. In P. Duffhues & L. Renneboog (Eds.), Advances in corporate finance and asset pricing, Emerald Group Publishing.
Tu, J., & Zhou, G. (2004). Data-generating process uncertainty: what difference does it make in portfolio decisions? Journal of Financial Economics, 72, 385–421.
Tu, J., & Zhou, G. (2008). Being naive about naive diversification: can investment theory be consistently useful? Working paper, Washington University.
Tu, J., & Zhou, G. (2009, forthcoming). Incorporating economic objectives into Bayesian priors: portfolio choice under parameter uncertainty. Journal of Financial and Quantitative Analysis.
Tütüncü, R., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132, 157–187.
Uppal, R., & Wang, T. (2003). Model misspecification and underdiversification. Journal of Finance, 58(6), 2465–2486.
Wang, Z. (2004). A shrinkage approach to model uncertainty and asset allocation. Review of Financial Studies, 18(2), 673–705.
Whittle, P. (1990). Risk-sensitive optimal control. New York: Wiley.
Whittle, P. (1996). Optimal control: basics and beyond. New York: Wiley.
Xia, Y. (2001). Learning about predictability: the effect of parameter uncertainty on dynamic asset allocation. Journal of Finance, 56, 205–246.
Young, M. R. (1998). A minimax portfolio selection rule with linear programming solution. Management Science, 44, 673–683.
Zellner, A., & Chetty, V. K. (1965). Prediction and decision problems in regression models from the Bayesian point of view. Journal of the American Statistical Association, 60, 608–616.
Zhou, G. (2008). On the fundamental law of active portfolio management: what happens if our estimates are wrong? Journal of Portfolio Management, 34(3), 26–33.
Zhou, G. (2009, forthcoming) Beyond Black-Litterman: letting the data speak. Journal of Portfolio Management.
Zhu, S. S., & Fukushima, M. (2008, forthcoming). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fabozzi, F.J., Huang, D. & Zhou, G. Robust portfolios: contributions from operations research and finance. Ann Oper Res 176, 191–220 (2010). https://doi.org/10.1007/s10479-009-0515-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-009-0515-6