Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust portfolios: contributions from operations research and finance

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we provide a survey of recent contributions to robust portfolio strategies from operations research and finance to the theory of portfolio selection. Our survey covers results derived not only in terms of the standard mean-variance objective, but also in terms of two of the most popular risk measures, mean-VaR and mean-CVaR developed recently. In addition, we review optimal estimation methods and Bayesian robust approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, D. H., Boudoukh, J., Richardson, M., & Whitelaw, R. F. (1999). Optimal risk management using options. Journal of Finance, 54, 359–375.

    Google Scholar 

  • Aït-Sahalia, Y., & Brandt, M. W. (2001). Variable selection for portfolio choice. Journal of Finance, 56, 1297–1351.

    Google Scholar 

  • Alexander, G. J., & Baptista, A. M. (2002). Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. Journal of Economic Dynamics and Control, 26, 1159–1193.

    Google Scholar 

  • Alexander, G. J., & Baptista, A. M. (2004). A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Management Science, 50, 1261–1273.

    Google Scholar 

  • Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd ed.). New York: Wiley.

    Google Scholar 

  • Ang, A., Bekaert, G., & Liu, J. (2005). Why stocks may disappoint. Journal of Financial Economics, 76, 471–508.

    Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.

    Google Scholar 

  • Avramov, D. (2004). Stock predictability and asset pricing models. Review of Financial Studies, 17(3), 699–738.

    Google Scholar 

  • Barberis, N. (2000). Investing for the long run when returns are predictable. Journal of Finance, 55, 225–264.

    Google Scholar 

  • Basak, S., & Shapiro, A. (2001). Value-at-risk management: optimal policies and asset prices. Review of Financial Studies, 14, 371–405.

    Google Scholar 

  • Bawa, V. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2, 95–121.

    Google Scholar 

  • Bawa, V. S., Brown, S. J., & Klein, R. W. (1979). Estimation risk and optimal portfolio choice. Amsterdam: North-Holland.

    Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23, 769–805.

    Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25, 1–13.

    Google Scholar 

  • Ben-Tal, A., Margalit, T., & Nemirovski, A. N. (2002). Robust modeling of multi-stage portfolio problems. In H. Frenk, K. Roos, T. Terlaky, & S. Zhang (Eds.), High performance optimization (pp. 303–328). Dordrecht: Kluwer.

    Google Scholar 

  • Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer.

    Google Scholar 

  • Best, M. J., & Grauer, R. R. (1991). On the sensitivity of mean-variance efficient portfolios to changes in asset means: some analytical and computational results. Review of Financial Studies, 4(2), 315–342.

    Google Scholar 

  • Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48, 28–43.

    Google Scholar 

  • Boyle, P. P., Siu, T. K., & Yang, H. (2002). Risk and probability measures. Risk, 15(7), 53–57.

    Google Scholar 

  • Brandt, M. W. (2004, forthcoming). Portfolio choice problems. Handbook of financial econometrics, Ait-Sahalia, Y. & L. P. Hansen (Eds.).

  • Broadie, M. (1993). Computing efficient frontiers using estimated parameters. Annals of Operations Research, 45, 21–58.

    Google Scholar 

  • Brown, S. J. (1976). Optimal portfolio choice under uncertainty. Ph.D. dissertation, University of Chicago.

  • Brown, S. J. (1978). The portfolio choice problem: comparison of certainty equivalence and optimal Bayes portfolios. Communications in Statistics—Simulation and Computation, 7, 321–334.

    Google Scholar 

  • Brown, D. B., & Sim, M. (2008, forthcoming). Satisfying measures for analysis of risky positions. Management Science.

  • Calafiore, G. C. (2007). Ambiguous risk measures and optimal robust portfolios. SIAM Journal on Optimization, 18(3), 853–877.

    Google Scholar 

  • Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfolio selection: robust portfolio construction. Journal of Asset Management, 7(2), 109–127.

    Google Scholar 

  • Chincarini, L. B., & Kim, D. (2006). Quantitative equity portfolio management. New York: McGraw-Hill.

    Google Scholar 

  • Chopra, V. K., & Ziemba, W. T. (1993). The effects of errors in means, variances, and covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2), 6–11.

    Google Scholar 

  • Costa, O. L. V., & Paiva, A. C. (2002). Robust portfolio selection using linear-matrix inequalities. Journal of Economic Dynamics and Control, 26(6), 889–909.

    Google Scholar 

  • Cremers, K. J. M. (2002). Stock return predictability: a Bayesian model selection perspective. Review of Financial Studies, 15(4), 1223–1249.

    Google Scholar 

  • Delage, E., & Ye, Y. (2008, forthcoming). Distributionally robust optimization under moment uncertainty with application to data-driven problems. Operations Research.

  • Dembo, R., & Rosen, D. (2000). The practice of portfolio replication. Algo Research Quarterly, 3(2), 11–22.

    Google Scholar 

  • DeMiguel, V., & Nogales, F. J. (2008, forthcoming). Portfolio selection with robust estimation. Operations Research.

  • DeMiguel, V., Garlappi, L., & Uppal, R. (2008, forthcoming). Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Review of Financial Studies.

  • Duchin, D., & Levy, H. (2009, forthcoming). Markowitz versus the Talmudic portfolio diversification strategies. Journal of Portfolio Management.

  • El Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 18, 1035–1064.

    Google Scholar 

  • El Ghaoui, L., Oks, M., & Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Operations Research, 51, 543–556.

    Google Scholar 

  • Elliott, R. J., & Siu, T. K. (2008, forthcoming). On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy. Annals of Operations Research.

  • Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin: Springer.

    Google Scholar 

  • Fabozzi, F. J., Gupta, F., & Markowitz, H. M. (2002). The legacy of modern portfolio theory. Journal of Investing, 11(3), 7–22.

    Google Scholar 

  • Fabozzi, F., Focardi, S. M., & Kolm, P. N. (2006). Incorporating trading strategies in the Black-Litterman framework. Journal of Trading, Spring, 28–36.

    Google Scholar 

  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D., & Focardi, S. M. (2007). Robust portfolio optimization and management. Hoboken: Wiley.

    Google Scholar 

  • Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics, 6(4), 429–447.

    Google Scholar 

  • Föllmer, H., Schied, A., & Weber, S. (2008). A robust preference and robust portfolio choice, Preprint.

  • Frittelli, M., & Rosazza Gianin, E. (2002). Putting order in risk measures. Journal of Banking and Finance, 26(7), 1473–1486.

    Google Scholar 

  • Garlappi, L., Uppal, R., & Wang, T. (2007). Portfolio selection with parameter and model uncertainty: a multi-prior approach. Review of Financial Studies, 20(1), 41–81.

    Google Scholar 

  • Goldfarb, D., & Iyengar, G. (2003a). Robust convex quadratically constrained programs. Mathematical Programming, 97, 495–515.

    Google Scholar 

  • Goldfarb, D., & Iyengar, G. (2003b). Robust portfolio selection problems. Mathematics of Operations Research, 28, 1–38.

    Google Scholar 

  • Grinold, R. C., & Kahn, R. N. (2000). Active portfolio management (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Guidolin, M., & Timmermann, A. (2008). International asset allocation under regime switching, skew and kurtosis preferences. Review of Financial Studies, 21(2), 889–935.

    Google Scholar 

  • Gul, F. (1991). A theory of disappointment aversion. Econometrica, 59(3), 667–686.

    Google Scholar 

  • Hall, J. A., Brorsen, B. W., & Irwin, S. H. (1989). The distribution of futures prices: a test of the stable Paretian and mixture of normals hypothesis. Journal of Financial and Quantitative Analysis, 24, 105–116.

    Google Scholar 

  • Hansen, L. P., & Sargent, T. J. (2008). Robustness. Princeton: Princeton University Press.

    Google Scholar 

  • Harvey, C. R., Liechty, J., Liechty, M., & Müller, P. (2003). Portfolio selection with higher moments. Working Paper, Duke University.

  • Holton, G. (1997). Subjective value-at-risk. Financial Engineering News, August.

  • Hong, Y., Tu, J., & Zhou, G. (2007). Asymmetries in stock returns: statistical tests and economic evaluation. Review of Financial Studies, 20, 1547–1581.

    Google Scholar 

  • Huang, D., Zhu, S. S., Fabozzi, F. J., & Fukushima, M. (2008). Portfolio selection with uncertain exit time: a robust CVaR approach. Journal of Economic Dynamics and Control, 32(2), 594–623.

    Google Scholar 

  • Huber, R. J. (2003). Robust statistics. New York: Wiley.

    Google Scholar 

  • Jobson, J. D., & Korkie, B. (1980). Estimation for Markowitz efficient portfolios. Journal of the American Statistical Association, 75, 544–554.

    Google Scholar 

  • Jobson, J. D., Korkie, B., & Ratti, V. (1979). Improved estimation for Markowitz portfolios using James-Stein type estimators. Proceedings of the American Statistical Association, Business and Economics Statistics Section, 41, 279–284.

    Google Scholar 

  • Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21, 279–292.

    Google Scholar 

  • Jorion, P. (1991). Bayesian and CAPM estimators of the means: implications for portfolio selection. Journal of Banking and Finance, 15, 717–727.

    Google Scholar 

  • Jorion, P. (2006). Value-at-risk: the new benchmark for managing financial risk (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kacperczyk, M. (2007). Asset allocation under distribution uncertainty. Working paper, University of British Columbia.

  • Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42, 621–656.

    Google Scholar 

  • Kandel, S., & Stambaugh, R. F. (1996). On the predictability of stock returns: an asset-allocation perspective. Journal of Finance, 51, 385–424.

    Google Scholar 

  • Klein, R. W., & Bawa, V. S. (1976). The effect of estimation risk on optimal portfolio choice. Journal of Financial Economics, 3, 215–231.

    Google Scholar 

  • Kleshchelskiy, I., & Vincentz, N. (2007). Robust equilibrium yield curves. Working paper, Washington University.

  • Knight, F. (1921). Risk, uncertainty and profit. Boston: Houghton Mifflin.

    Google Scholar 

  • Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37, 519–531.

    Google Scholar 

  • Konno, H., & Koshizuka, T. (2005). Mean-absolute deviation model. IIE Transactions, 37, 893–900.

    Google Scholar 

  • Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603–621.

    Google Scholar 

  • Litterman, B. (2003). Modern investment management: an equilibrium approach. New York: Wiley.

    Google Scholar 

  • Lutgens, F. (2004). Robust portfolio optimization. Ph.D. dissertation, University of Maastricht.

  • Lutgens, F., & Schotman, P. (2006). Robust portfolio optimization with multiple experts. Working paper, University of Maastricht.

  • Maccheroni, F., Marinacci, M., & Rustichini, A. (2006). Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica, 74(6), 1447–1498.

    Google Scholar 

  • MacKinlay, A. C., & Pástor, L̆. (2000). Asset pricing models: implications for expected returns and portfolio selection. Review of Financial Studies, 13, 883–916.

    Google Scholar 

  • Maenhout, P. J. (2004). Robust portfolio rules and asset pricing. Review of Financial Studies, 17, 951–983.

    Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: efficient diversification of investments. New Jersey: Wiley.

    Google Scholar 

  • Maronna, R. A., Martin, D. R., & Yohai, V. J. (2006). Robust statistics: theory and methods. New York: Wiley.

    Google Scholar 

  • Merton, R. (2003). Thoughts on the future: theory and practice of investment management. Financial Analyst Journal, 59(1), 17–23.

    Google Scholar 

  • Meucci, A. (2005). Risk and asset allocation. Berlin: Springer.

    Google Scholar 

  • Mori, H. (2004). Finite sample properties of estimators for the optimal portfolio weight. Journal of Japan Statistical Society, 34, 27–46.

    Google Scholar 

  • Natarajan, K., Pachamanova, D., & Sim, M. (2008a). Incorporating asymmetric distribution information in robust value-at-risk optimization. Management Science, 54(3), 573–585.

    Google Scholar 

  • Natarajan, K., Sim, M., & Uichanco, J. (2008b). Tractable robust expected utility and risk models for portfolio optimization, Working paper, National University of Singapore.

  • Natarajan, K., Pachamanova, D., & Sim, M. (2009, forthcoming). Constructing risk measures from uncertainty sets. Operations Research.

  • Ortobelli, S., Rachev, S. T., Stoyanov, S., Fabozzi, F. J., & Biglova, A. (2005). The proper use of risk measures in portfolio theory. International Journal of Theoretical and Applied Finance, 8(8), 1107–1133.

    Google Scholar 

  • Pástor, L̆. (2000). Portfolio selection and asset pricing models. Journal of Finance, 55, 179–223.

    Google Scholar 

  • Pástor, L̆., & Stambaugh, R. F. (2000). Comparing asset pricing models: an investment perspective. Journal of Financial Economics, 56, 335–381.

    Google Scholar 

  • Peel, D., & McLachlan, G. J. (2000). Robust mixture modeling using the t distribution. Statistics and Computing, 10, 339–348.

    Google Scholar 

  • Pinar, M. C. (2007). Robust scenario optimization based on downside-risk measure for multi-period portfolio selection. OR Spectrum, 29(2), 295–309.

    Google Scholar 

  • Pinar, M. C., & Tütüncü, R. (2005). Robust profit opportunities in risk financial portfolios. Operations Research Letters, 33(4), 331–340.

    Google Scholar 

  • Popescu, I. (2007). Robust mean-covariance solutions for stochastic optimization. Operations Research, 55(1), 98–112.

    Google Scholar 

  • Qian, E., Hua, R., & Sorensen, E. (2007). Quantitative equity portfolio management: modern techniques and applications. New York: Chapman & Hall.

    Google Scholar 

  • Rachev, S. T., Ortobelli, S., Stoyanov, S., Fabozzi, F. J., & Biglova, A. (2008a). Desirable properties of an ideal risk measure in portfolio theory. International Journal of Theoretical and Applied Finance, 11(1), 19–54.

    Google Scholar 

  • Rachev, S. T., Hsu, J. S. J., Bagasheva, B. S., & Fabozzi, F. J. (2008b). Bayesian methods in finance. New Jersey: Wiley.

    Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41.

    Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7), 1443–1471.

    Google Scholar 

  • Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006). Optimality conditions in portfolio analysis with generalized deviation measures. Mathematical Programming, 108, 515–540.

    Google Scholar 

  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.

    Google Scholar 

  • Rustem, B., Becker, R. G., & Marty, W. (2000). Robust min-max portfolio strategies for rival forecast and risk scenarios. Journal of Economic Dynamics and Control, 24, 1591–1621.

    Google Scholar 

  • Shen, R., & Zhang, S. (2008). Robust portfolio selection based on a multi-stage scenario tree. European Journal of Operational Research, 191(3), 864–887.

    Google Scholar 

  • Siu, T. K., Tong, H., & Yang, H. (2001). Bayesian risk measures for derivatives via random Esscher transform. North American Actuarial Journal, 5(3), 78–91.

    Google Scholar 

  • Stambaugh, R. F. (1997). Analyzing investments whose histories differ in length. Journal of Financial Economics, 45, 285–331.

    Google Scholar 

  • Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the third Berkeley symposium on mathematical statistics and probability (vol. 1, pp. 197–206). Berkeley: University of California Press.

    Google Scholar 

  • Steinbach, M. C. (2001). Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM Review, 43(1), 31–85.

    Google Scholar 

  • Stoyanov, S. V., Rachev, S. T., & Fabozzi, F. J. (2007). Optimal financial portfolios. Applied Mathematical Finance, 14(5), 403–438.

    Google Scholar 

  • Strzalecki, T. (2008). Axiomatic foundations of multiplier preferences. Working paper, Harvard University.

  • Ter Horst, J., De Roon, F., & Werker, B. (2006), Incorporating estimation risk in portfolio choice. In P. Duffhues & L. Renneboog (Eds.), Advances in corporate finance and asset pricing, Emerald Group Publishing.

  • Tu, J., & Zhou, G. (2004). Data-generating process uncertainty: what difference does it make in portfolio decisions? Journal of Financial Economics, 72, 385–421.

    Google Scholar 

  • Tu, J., & Zhou, G. (2008). Being naive about naive diversification: can investment theory be consistently useful? Working paper, Washington University.

  • Tu, J., & Zhou, G. (2009, forthcoming). Incorporating economic objectives into Bayesian priors: portfolio choice under parameter uncertainty. Journal of Financial and Quantitative Analysis.

  • Tütüncü, R., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132, 157–187.

    Google Scholar 

  • Uppal, R., & Wang, T. (2003). Model misspecification and underdiversification. Journal of Finance, 58(6), 2465–2486.

    Google Scholar 

  • Wang, Z. (2004). A shrinkage approach to model uncertainty and asset allocation. Review of Financial Studies, 18(2), 673–705.

    Google Scholar 

  • Whittle, P. (1990). Risk-sensitive optimal control. New York: Wiley.

    Google Scholar 

  • Whittle, P. (1996). Optimal control: basics and beyond. New York: Wiley.

    Google Scholar 

  • Xia, Y. (2001). Learning about predictability: the effect of parameter uncertainty on dynamic asset allocation. Journal of Finance, 56, 205–246.

    Google Scholar 

  • Young, M. R. (1998). A minimax portfolio selection rule with linear programming solution. Management Science, 44, 673–683.

    Google Scholar 

  • Zellner, A., & Chetty, V. K. (1965). Prediction and decision problems in regression models from the Bayesian point of view. Journal of the American Statistical Association, 60, 608–616.

    Google Scholar 

  • Zhou, G. (2008). On the fundamental law of active portfolio management: what happens if our estimates are wrong? Journal of Portfolio Management, 34(3), 26–33.

    Google Scholar 

  • Zhou, G. (2009, forthcoming) Beyond Black-Litterman: letting the data speak. Journal of Portfolio Management.

  • Zhu, S. S., & Fukushima, M. (2008, forthcoming). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Fabozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabozzi, F.J., Huang, D. & Zhou, G. Robust portfolios: contributions from operations research and finance. Ann Oper Res 176, 191–220 (2010). https://doi.org/10.1007/s10479-009-0515-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0515-6

Keywords

Navigation