Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Determination of Crack Surface Orientation in Carbon Fibre Reinforced Polymers by Measuring Electromagnetic Emission

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Electromagnetic emission (EME) generated by fracture of carbon fibre reinforced polymers (CFRP) is studied. The fracture is induced to cross-ply CFRP by mechanical loading in a three-point bending configuration. An EME acquisition set-up operating on the principle of capacitive coupling is used to measure the low frequency (kHz-MHz range) electric field whose generation is attributed to the charge redistribution accompanying the fracture processes. Multiple, differently oriented EME sensors, for the simultaneous EME measurement with different source-sensor orientations, were applied to account for the directionality of the EME sources and their generated electric fields. A method to deduce the crack orientation based on the emitted EME field’s directionality is proposed. A comparison between the angles of the EME sources obtained by this method and the actual crack surface orientations as determined by computed tomography is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamada, I., Masuda, K., Mizutani, H.: Electromagnetic and acoustic emission associated with rock fracture. Phys. Earth Planet. Int. 57, 157–68 (1989)

    Article  Google Scholar 

  2. Rabinovitch, A., Frid, V., Bahat, D., Goldbaum, J.: Fracture area calculation from electromagnetic radiation and its use in chalk failure analysis. Int. J. Rock Mech. Min. Sci. 37, 1149–54 (2000)

    Article  Google Scholar 

  3. Koshevaya, S., Grimalsky, V., Makarets, N., Kotsarenko, A., Siquieros-Alatorre, J., Perez-Enriquez, R., Juarez-Romero, D.: Electromagnetic emission from magnetite plate cracking under seismic processes. Adv. Geosci. 14, 25–28 (2008)

    Article  Google Scholar 

  4. Lacidogna, G., Carpinteri, A., Manuello, A., Durin, G., Schiavi, A., Niccolini, G., Agosto, A.: Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain 47, 144–152 (2010)

    Article  Google Scholar 

  5. Mori, Y., Obata, Y., Sikula, J.: Acoutic and electromagnetic emission from crack created in rock samples under deformation. J. Acoust. Emiss. 27, 157–166 (2009)

    Google Scholar 

  6. Frid, V., Rabinovitch, A., Bahat, D.: Fracture induced electromagnetic radiation. J. Phys. D 36, 1620–1628 (2003)

    Article  MATH  Google Scholar 

  7. Rabinovitch, A., Frid, V., Goldbaum, J., Bahat, D.: Polarization-depolarization process in glass during percussion drilling. Philos. Mag. 83, 2929–2940 (2003)

    Article  Google Scholar 

  8. Aman, S., Aman, A., Tomas, J.: Method of crack formation analysis based on mechanoluminecence. Mater. Sci. Appl. 3, 739–744 (2012)

    Google Scholar 

  9. Misra, A., Prasad, R.C., Chauhan, V.S., Srilakshmi, B.: A theoretical model for the electromagnetic radiation emission during plastic deformation and crack propagation in metallic materials. Int. J. Fract. 145, 99–121 (2007)

    Article  MATH  Google Scholar 

  10. Dickinson, J.T., Jensen, L.C., Dion, R.P.: Fracto-emission from high density polyethylene: bond breaking versus tribological stimulation. J. Appl. Phys. 73, 3047–3054 (1993)

    Article  Google Scholar 

  11. Gade, S.O., Weiss, U., Peter, M.A., Sause, M.G.R.: Relation of electromagnetic emission and crack dynamics in epoxy resin materials. J. Nondestruct. Eval. 33, 711–723 (2014)

    Article  Google Scholar 

  12. Petrenko, V.F.: Electromechanical phenomena in ice. CRREL Special report 96–92 (1996)

  13. Mizuno, Y.: Light emission associated with deformation and fracture of ice. J. Jpn. Soc. Snow 64, 241–248 (2002)

    Article  Google Scholar 

  14. Dickinson, J.T., Jahan-Latibari, A., Jensen, L.C.: Electron emission and acoustic emission from the fracture of graphite/epoxy composites. Int. Mater. Sci. 20, 229–236 (1985)

    Article  Google Scholar 

  15. Astanin, V.V., Shchegel, G.O., Hufenbach, W., Hornig, A., Langkamp, A.: Characterising failure in textile-reinforced thermoplastic composites by electromagnetic emission measurements under medium and high velocity impact loading. Int. J. Impact. Eng. 49, 22–30 (2012)

    Article  Google Scholar 

  16. Sedlak, P., Enoki, M., Ogasawara, T., Sikula, J.: Electromagnetic and acoustic emission in PEEK/Carbon nanotube composites. In: 29th European Conference on Acoustic Emission Testing, Vienna (2010)

  17. Stoudek, R., Trcka, T., Matysik, M., Vymazal, T., Plskova, I.: Acoustic and electromagnetic emission of lightweight concrete with polypropylene fibers. Mater. Tehnol. 50, 547–52 (2016)

    Article  Google Scholar 

  18. Koktavy, P.: Experimental study of electromagnetic emission signals generated by crack generation in composite materials. Meas. Sci. Technol. 20, 8 (2009)

    Article  Google Scholar 

  19. Sklarczyk, C., Winkler, S., Thielicke, B.: Die elektrische Emission beim Versagen von Faserverbundwerkstoffen und ihren Komponenten. Mat.-wiss. u. Werkstofftech. 27, 559–66 (1996)

    Article  Google Scholar 

  20. Macku, R., Koktavy, P., Trcka, T., Sicner, J.: Fracture related electromagnetic emission measurement and excess noise analysis of reinforced composites. Proc. Mater. Sci. 3, 116–121 (2014)

    Article  Google Scholar 

  21. Sause, M.G.R.: In-Situ Monitoring of Fiber-Reinforced Composites. Springer-International, Cham (2016)

    Book  Google Scholar 

  22. Tsutsumi, A., Shirai, N.: Electromagnetic signals associated with stickslip of quartz-free rocks. Tectonophysics 450, 79–84 (2008)

    Article  Google Scholar 

  23. Sedlak, P., Sikula, J., Lokajicek, T., Mori, Y.: Acoustic and electromagnetic emission as a tool for crack localization. Meas. Sci. Technol. 19(4), 045701 (2008)

    Article  Google Scholar 

  24. Takeuchi, A., Nagahama, H.: Electric dipoles perpendicular to a stick-slip plane. Phys. Earth Planet In. 155, 208–18 (2006)

    Article  Google Scholar 

  25. DIN EN ISO 14125 Fibre-reinforced plastic composites—Determination of flexural properties (1998)

  26. DIN EN ISO 291 Plastics—standard atmospheres for conditioning and testing (2008)

  27. Partridge, R.E.: Capacitive probe E-field sensors. Sensor Simul. Notes 11, 17 (1965) http://ece-research.unm.edu/summa/notes/SSN/note11

  28. Baum, C., Breen, E., Giles, J., O’Nelll, J., Sower, G.: Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions. IEEE Trans. Electromagn. Compat. 26, 22–35 (1978)

    Article  Google Scholar 

  29. Ivanov, V.V., Egorov, P.V., Kolpakova, L.A., Pimonov, A.G.: Crack dynamics and electromagnetic emission by loaded rock masses. Sov. Min. Sci. 24, 406–12 (1988)

    Article  Google Scholar 

  30. Dirks, H.K.: Quasi-stationary fields for microelectronic applications. Electr. Eng. 79, 145–55 (1996)

    Article  Google Scholar 

  31. Kalafat, S., Sause, M.G.R.: Acoustic emission source localization by artificial neural networks. Struct. Health Monit. 14, 633–647 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the DFG as part of the project “Relation of electromagnetic and acoustic emission to temporal and spatial crack motion on a microscopic scale in polymers and carbon fibres”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Gade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gade, S.O., Alaca, B.B. & Sause, M.G.R. Determination of Crack Surface Orientation in Carbon Fibre Reinforced Polymers by Measuring Electromagnetic Emission. J Nondestruct Eval 36, 21 (2017). https://doi.org/10.1007/s10921-017-0403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0403-y

Keywords

Navigation