Abstract
Based on the equivalence of A-stability and G-stability, the energy technique of the six-step BDF method for heat equation has been discussed in [Akrivis, Chen, Yu, Zhou, SIAM J. Numer. Anal., Minor Revised]. Unfortunately, this theory is hard to apply in the time-fractional PDEs. In this work, we consider three types of subdiffusion models, namely single-term, multi-term and distributed order fractional diffusion equations. We present a novel and concise stability analysis of the time stepping schemes generated by k-step backward difference formulae (BDFk), for approximately solving the subdiffusion equation. The analysis mainly relies on the energy technique by applying Grenander-Szegö theorem. This kind of argument has been widely used to confirm the stability of various A-stable schemes (e.g., \(k=1,2\)). However, it is not an easy task for higher order BDF methods, due to lack of the A-stability. The core object of this paper is to fill in this gap.
Similar content being viewed by others
References
Akrivis, G.: Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations. IMA J. Numer. Anal. 38, 1768–1796 (2018)
Akrivis, G., Chen, M.H., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. (Minor Revised) arXiv:2007.08924
Akrivis, G., Katsoprinakis, E.: Backward difference formulae: new multipliers and stability properties for parabolic equations. Math. Comp. 85, 2195–2216 (2016)
Baiocchi, C., Crouzeix, M.: On the equivalence of A-stability and G-stability. Appl. Numer. Math. 5, 19–22 (1989)
Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)
Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)
Chan, R.H.F., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)
Chen, M.H., Deng, W.H.: Fourth order difference approximations for space Riemann-Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. 16, 516–540 (2014)
Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)
Chen, M.H., Deng, W.H.: Discretized fractional substantial calculus. ESAIM M2AN 49, 373–394 (2015)
Chen, M.H., Deng, W.H.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37, A890–A917 (2015)
Chen, M.H., Deng, W.H.: High order algorithm for the time-tempered fractional Feynman–Kac equation. J. Sci. Comput. 76, 867–887 (2018)
Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)
Dahlquist, G.: G-stability is equivalent to A-stability. BIT 18, 384–401 (1978)
Gao, G.H., Sun, H.H., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equation based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)
Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (2010)
Henrici, P.: Applied and Computational Complex Analysis. New York (1974)
Ji, C.C., Sun, Z.Z.: A high-order compact finite difference schemes for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)
Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)
Jin, B.T., Lazarov, Thomée, T, R., Zhou, Z.: On nonnegativity preservation in finite element methods for subdiffusion equations. Math. Comp. 86, 2239–2260 (2017)
Jin, B.T., Li, B.Y., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)
Klafter, J., Sokolov, I.M.: First Steps in Random Walks: From Tools to Applications. Oxford University Press, New York (2011)
Li, B.Y., Wang, K., Zhou, Z.: Long-time accurate symmetrized implicit-explicit BDF methods for a class of parabolic equations with non-self-adjoint operators. SIAM J. Numer. Anal. 58, 189–210 (2020)
Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Modell. 38, 3802–3821 (2014)
Liu, J.: Simple and efficient ALE methods with provable temporal accuracy up to fifth order for the stokes equations on time varying domains. SIAM J. Numer. Anal. 51, 743–772 (2013)
Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33, 1365–1385 (2013)
Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)
Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988)
Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)
Nevanlinna, O., Odeh, F.: Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optim. 3, 377–423 (1981)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer, Berlin (2007)
Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)
Shi, J.K., Chen, M.H.: Correction of high-order BDF convolution quadrature for fractional Feynman-Kac equation with Lévy flight. J. Sci. Comput. 85, 28 (2020)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)
Xu, D.: Uniform \(l^1\) behaviour in a second-order difference-type method for a linear Volterra equation with completely monotonic kernel I:stability. IMA J. Numer. Anal. 31, 1154–1180 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by NSFC 11601206 and Hong Kong RGC grant (No. 25300818).
Appendix
Appendix
Let
Then the coefficients \(\{l_j^{(k)}\}_{j=0}^{\infty }\) are given explicitly by the following recurrence relation, see Theorem 1.6 of [18].
-
BDF1
$$\begin{aligned} l_0^{(k)}=1,~l_j^{(k)}=\left( 1-\frac{{\alpha }+1}{j}\right) l_{j-1}^{(k)},~j\geqslant 1. \end{aligned}$$
-
BDF2
$$\begin{aligned} \begin{aligned} l_0^{(k)}&=\left( \frac{3}{2}\right) ^{\alpha },~l_1^{(k)}=-\left( \frac{3}{2}\right) ^{\alpha }\frac{4}{3}{\alpha },\\ l_j^{(k)}&=\frac{4}{3}\left( 1-\frac{{\alpha }+1}{j}\right) l_{j-1}^{(k)}+\frac{1}{3}\left( \frac{2({\alpha }+1)}{j}-1\right) l_{j-2}^{(k)},~j\geqslant 2. \end{aligned} \end{aligned}$$
-
BDF3
$$\begin{aligned} \begin{aligned} l_0^{(k)}&=\left( \frac{11}{6}\right) ^{\alpha },~l_1^{(k)}=-\left( \frac{11}{6}\right) ^{\alpha }\frac{18}{11}{\alpha },~ l_2^{(k)}=\left( \frac{11}{6}\right) ^{\alpha }\left( \frac{162}{121}{\alpha }^2-\frac{63}{121}{\alpha }\right) ,\\ l_j^{(k)}&=\frac{18}{11}\left( 1-\frac{{\alpha }+1}{j}\right) l_{j-1}^{(k)}\!+\!\frac{18}{22}\left( \frac{2({\alpha }+1)}{j}-1\right) \!l_{j-2}^{(k)}\\&\quad +\frac{2}{11}\left( 1-\frac{3\left( {\alpha }+1\right) }{j}\right) \!l_{j-3}^{(k)},~j\geqslant 3. \end{aligned} \end{aligned}$$
-
BDF4
$$\begin{aligned} \begin{aligned} l_0^{(k)}&=\left( \frac{25}{12}\right) ^{\alpha },~l_1^{(k)}=-\left( \frac{25}{12}\right) ^{\alpha }\frac{48}{25}{\alpha },~ l_2^{(k)}=\left( \frac{25}{12}\right) ^{\alpha }\left( \frac{1152}{625}{\alpha }^2-\frac{252}{625}{\alpha }\right) ,\\ l_3^{(k)}&=\left( \frac{25}{12}\right) ^{\alpha }\left( -\frac{18432}{15625}{\alpha }^3+\frac{12096}{15625}{\alpha }^2-\frac{3664}{15625}{\alpha }\right) ,\\ l_j^{(k)}&=\frac{48}{25}\left( 1-\frac{{\alpha }+1}{j}\right) l_{j-1}^{(k)}+\frac{36}{25}\left( \frac{2({\alpha }+1)}{j}-1\right) l_{j-2}^{(k)}\\&\quad +\frac{16}{25}\left( 1-\frac{3\left( {\alpha }+1\right) }{j}\right) l_{j-3}^{(k)}+\frac{3}{25}\left( \frac{4({\alpha }+1)}{j}-1\right) l_{j-4}^{(k)},~j\geqslant 4. \end{aligned} \end{aligned}$$
-
BDF5
$$\begin{aligned} \begin{aligned} l_0^{(k)}&=\!\left( \!\frac{137}{60}\!\right) ^{\alpha },~l_1^{(k)}=\!-\!\left( \!\frac{137}{60}\!\right) ^{\alpha }\frac{300}{137}{\alpha }\!,~ l_2^{(k)}\!=\!\left( \!\frac{137}{60}\!\right) ^{\alpha }\!\left( \!\frac{45000}{18769}{\alpha }^2\!-\!\frac{3900}{18769}{\alpha }\!\right) \!,\\ l_3^{(k)}&=\left( \frac{137}{60}\right) ^{\alpha }\left( -\frac{4500000}{2571353}{\alpha }^3+\frac{1170000}{2571353}{\alpha }^2-\frac{423800}{2571353}{\alpha }\right) ,\\ l_4^{(k)}&=\!\left( \!\!\frac{137}{60}\!\right) ^{\alpha }\!\left( \frac{337500000}{352275361}{\alpha }^4\!\!-\!\!\frac{175500000}{352275361}{\alpha }^3\! \!+\!\!\frac{134745000}{352275361}{\alpha }^2\!\!-\!\!\frac{\!103893525\!}{\!352275361\!}{\alpha }\!\!\right) ,\\ l_j^{(k)}&=\!\frac{300}{137}\!\left( \!1\!-\!\frac{\alpha +1}{j}\!\right) \!l_{j-1}^{(k)}\!+\!\frac{300}{137}\!\left( \!\frac{2({\alpha }+1)}{j}\!-1\!\right) \!l_{j-2}^{(k)} \!+\!\frac{200}{137}\!\left( \!1\!-\!\frac{3\!\left( \!{\alpha }\!+\!1\!\right) \!}{j}\!\right) \!l_{j-3}^{(k)}\\&\quad +\frac{75}{137}\left( \frac{4({\alpha }+1)}{j}-1\right) l_{j-4}^{(k)}+\frac{12}{137}\left( 1-\frac{5\left( {\alpha }+1\right) }{j}\right) l_{j-5}^{(k)},~j\geqslant 5. \end{aligned} \end{aligned}$$
-
BDF6
$$\begin{aligned} \begin{aligned} l_0^{(k)}&=\!\left( \!\frac{147}{60}\!\right) ^{\alpha },~l_1^{(k)}\!=\!-\left( \frac{147}{60}\right) ^{\alpha }\frac{360}{147}{\alpha },~ l_2^{(k)}\!=\!\left( \!\frac{147}{60}\!\right) \!^{\alpha }\!\left( \!\frac{7200}{2401}{\alpha }^2\!+\!\frac{150}{2401}{\alpha }\!\!\right) ,\\ l_3^{(k)}&=\left( \frac{147}{60}\right) ^{\alpha }\left( -\frac{288000}{117649}{\alpha }^3-\frac{18000}{117649}{\alpha }^2-\frac{42400}{352947}{\alpha }\right) ,\\ l_4^{(k)}&=\left( \frac{147}{60}\right) ^{\alpha }\left( \frac{8640000}{5764801}{\alpha }^4+\frac{1080000}{5764801}{\alpha }^3 +\frac{1707250}{5764801}{\alpha }^2-\frac{2603575}{5764801}{\alpha }\right) ,\\ l_5^{(k)}&=\left( \frac{147}{60}\right) ^{\alpha }\left( -\frac{207360000}{282475249}{\alpha }^5-\frac{43200000}{282475249}{\alpha }^4-\frac{14730000}{40353607}{\alpha }^3\right. \\&\quad \left. +\frac{310309000}{282475249}{\alpha }^2-\frac{94994224}{282475249}{\alpha }\right) ,\\ l_j^{(k)}&=\!\frac{360}{147}\!\left( \!1\!-\!\frac{\alpha +1}{j}\!\right) \!l_{j-1}^{(k)}\!+\!\frac{450}{147}\!\left( \!\frac{2({\alpha }+1)}{j}\!-\!1\!\right) \!l_{j-2}^{(k)} \!+\!\frac{400}{147}\!\left( \!1\!-\!\frac{3\!\left( {\alpha }+1\right) \!}{j}\!\right) \!l_{j-3}^{(k)}\\&\quad +\frac{225}{147}\left( \frac{4({\alpha }+1)}{j}-1\right) l_{j-4}^{(k)}+\frac{72}{147}\left( 1-\frac{5\left( {\alpha }+1\right) }{j}\right) l_{j-5}^{(k)}\\&\quad +\frac{10}{147}\left( \frac{6({\alpha }+1)}{j}-1\right) l_{j-6}^{(k)},~j\geqslant 6. \end{aligned} \end{aligned}$$
Rights and permissions
About this article
Cite this article
Chen, M., Yu, F. & Zhou, Z. Backward Difference Formulae: The Energy Technique for Subdiffusion Equation. J Sci Comput 87, 94 (2021). https://doi.org/10.1007/s10915-021-01509-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01509-9