Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Two Time-Stepping Schemes for Sub-Diffusion Equations with Singular Source Terms

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Singular source terms in sub-diffusion equations may lead to the unboundedness of solutions, which will bring a severe reduction of convergence order of existing time-stepping schemes. In this work, we propose two efficient time-stepping schemes for solving sub-diffusion equations with a class of source terms mildly singular in time. One discretization is based on the Grünwald-Letnikov and backward Euler methods. First-order error estimate with respect to time is rigorously established for singular source terms and nonsmooth initial data. The other scheme derived from the second-order backward differentiation formula (BDF) is proved to possess second-order accuracy in time. Further, piecewise linear finite element and lumped mass finite element discretizations in space are applied and analyzed rigorously. Numerical investigations confirm our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Bajlekova, E.G.: Fractional evolution equations in Banach spaces, PhD thesis, Eindhoven University of Technology, Eindhoven, (2001)

  2. Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comp. 45, 417–437 (1985)

    Article  MathSciNet  Google Scholar 

  3. Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations. North-Holland Publishing Co., Amsterdam (1986)

    MATH  Google Scholar 

  4. Chatzipantelidis, P., Lazarov, R.D., Thomée, V.: Some error estimates for the lumped mass finite element method for a parabolic problem. Math. Comp. 81, 1–20 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chen, M., Jiang, S., Bu, W.: Two L1 schemes on graded meshes for fractional Feynman-Kac equation, J. Sci. Comput., 88, Paper No. 58, 24 (2021)

  6. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  7. Elliott, D.: An asymptotic analysis of two algorithms for certain Hadamard finite-part integrals. IMA J. Numer. Anal. 13, 445–462 (1993)

    Article  MathSciNet  Google Scholar 

  8. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  9. Gao, G.-H., Sun, Z.-Z., Zhang, H.-W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  10. Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53, 1350–1369 (2015)

    Article  MathSciNet  Google Scholar 

  11. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  13. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview. Comput. Methods Appl. Mech. Engrg. 346, 332–358 (2019)

    Article  MathSciNet  Google Scholar 

  16. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kopteva, N.: Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. Math. Comp. 90, 19–40 (2021)

    Article  MathSciNet  Google Scholar 

  18. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  20. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  21. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  22. Lubich, C.: Convolution quadrature revisited. BIT 44, 503–514 (2004)

    Article  MathSciNet  Google Scholar 

  23. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  24. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    Article  MathSciNet  Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  26. Miller, R.K., Feldstein, A.: Smoothness of solutions of Volterra integral equations with weakly singular kernels. SIAM J. Math. Anal. 2, 242–258 (1971)

    Article  MathSciNet  Google Scholar 

  27. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  28. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  Google Scholar 

  29. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  30. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  31. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Tian.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Han Zhou was partially supported by the National Natural Science Foundation of China (No. 11901151).

Wenyi Tian was partially supported by the National Natural Science Foundation of China (Nos. 11701416 and 12071343).

Appendices

Appendix

A Proofs of Theorems 3.1 and 3.3

1.1 A.1 Proof of Theorem 3.1

Proof of Theorem 3.1

We obtain from (2.5) and (3.5) that

$$\begin{aligned} u(t)-u_h(t)=\frac{1}{2\pi i}\int _{\Gamma _{\varepsilon }^{\theta }\cup S_{\varepsilon }} e^{st}{\hat{G}}_h(s){\hat{f}}(x,s)\mathrm {d}s, \end{aligned}$$
(A.1)

where

$$\begin{aligned} {\hat{G}}_h(s)=(s^{\alpha }-\Delta )^{-1}-(s^{\alpha }-\Delta _{h})^{-1}P_h. \end{aligned}$$
(A.2)

By the similar estimate in the proof of Theorem 2.1 in [23], it holds that \(\Vert {\hat{G}}_h(s)\Vert \le Ch^2.\) Then for \(\varepsilon =t^{-1}\), together with the condition \(\Vert {\hat{f}}(s)\Vert \le c|s|^{-\mu -1}\) in Assumption 1, we have

$$\begin{aligned} \begin{aligned} \Vert u(t)-u_h(t)\Vert&\le ch^2\int _{\Gamma _{\varepsilon }^{\theta } \cup S_{\varepsilon }}|e^{st}||s|^{-\mu -1}|\mathrm {d}s|\\&\le ch^2\left( \int _{\varepsilon }^{\infty }e^{\rho t\cos \theta }\rho ^{-\mu -1} \mathrm {d}\rho +\int _{-\theta }^{\theta }e^{\varepsilon t\cos \xi } \varepsilon ^{-\mu }\mathrm {d}\xi \right) \\&\le ct^{\mu }h^2, \end{aligned} \end{aligned}$$
(A.3)

which completes the proof. \(\square \)

1.2 A.2 Proof of Theorem 3.3

For the convergence analysis of the lumped mass FEM, the quadrature error operator \(Q_h : X_h\rightarrow X_h\) was introduced in [4], which is defined by

$$\begin{aligned} (\nabla Q_h v,\nabla w)=(v,w)_h-(v,w),~~\forall ~w\in X_h. \end{aligned}$$
(A.4)

It was analyzed in [4] that the quadrature error operator \(Q_h\) due to mass lumping satisfies the following estimates.

Lemma A.1

([4]) Let the operators \({\bar{\Delta }}_h\) and \(Q_h\) defined by (3.10) and (A.4), respectively. Then it holds that

$$\begin{aligned} \Vert \nabla Q_h\psi \Vert +h\Vert {\bar{\Delta }}_hQ_h\psi \Vert \le Ch^{p+1}\Vert \nabla ^p\psi \Vert ,\quad \forall ~\psi \in X_h,~p=0,1. \end{aligned}$$
(A.5)

Furthermore, if the mesh is symmetric, then it satisfies

$$\begin{aligned} \Vert Q_h\psi \Vert \le ch^2\Vert \psi \Vert ,\quad \forall ~\psi \in X_h. \end{aligned}$$
(A.6)

With the quadrature error operator defined by (A.4), it yields from (3.1) and (3.8) that the error \(e_h(t)=u_h(t)-{\bar{u}}_h(t)\) satisfies

$$\begin{aligned} {^C}D^{\alpha }_te_{h}(t)-{\bar{\Delta }}_{h}e_{h}(t)=-{\bar{\Delta }}_hQ_h{^C} D^{\alpha }_tu_{h}(t),~~\forall ~t>0,\quad e_h(0)=0. \end{aligned}$$
(A.7)

Taking the Laplace transform on (A.7) implies that

$$\begin{aligned} {\hat{e}}_h(s)=(s^{\alpha }-{\bar{\Delta }}_h)^{-1}{\bar{\Delta }}_hQ_h\big (s^{\alpha -1}P_hu^0-s^{\alpha }{\hat{u}}_h(s)\big ). \end{aligned}$$
(A.8)

Since \(\Delta _h\) satisfies the resolvent estimate \(\Vert \big (s-\Delta _h\big )^{-1}\Vert \le M|s|^{-1}\), it is derived from (3.4) that

$$\begin{aligned} \begin{aligned} \Vert {\hat{u}}_h(s)\Vert&=\big \Vert (s^{\alpha }-\Delta _h)^{-1}\big (s^{\alpha -1}P_hu^0 +P_h{\hat{f}}(s)\big )\big \Vert \\&\le |s|^{-1}\Vert u^0\Vert +|s|^{-\alpha -\mu -1}. \end{aligned} \end{aligned}$$
(A.9)

In addition, the operator \({\bar{\Delta }}_h\) defined by (3.10) also satisfies the resolvent estimate, then it follows from (A.5) that

$$\begin{aligned} \begin{aligned}&\Vert s^{\alpha -1}(s^{\alpha }-{\bar{\Delta }}_h)^{-1} {\bar{\Delta }}_hQ_hP_hu^0\Vert \le |s|^{-1}\Vert u^0\Vert ,\\&\Vert s^{\alpha }(s^{\alpha }-{\bar{\Delta }}_h)^{-1}{\bar{\Delta }}_hQ_h{\hat{u}}_h(s)\Vert \le \Vert {\hat{u}}_h(s)\Vert . \end{aligned} \end{aligned}$$
(A.10)

Therefore, by (A.9), (A.10) and the Cauchy’s theorem, the inverse Laplace transform on (A.8) implies that the error \(e_{h}(t)\) for \(t>0\) can be represented by an integral over \(\Gamma _{\varepsilon }^{\theta }\cup S_{\varepsilon }\) as follows

$$\begin{aligned} e_{h}(t)=\frac{1}{2\pi i}\int _{\Gamma _{\varepsilon }^{\theta }\cup S_{\varepsilon }} e^{st}(s^{\alpha }-{\bar{\Delta }}_{h})^{-1}{\bar{\Delta }}_hQ_h \big (s^{\alpha -1}P_hu^0-s^{\alpha }{\hat{u}}_h(s)\big )\mathrm {d}s. \end{aligned}$$
(A.11)

Now it is ready to establish the error estimate for the lumped mass finite element scheme (3.8). The error is splitted into \(u(t)-{\bar{u}}_h(t)=u(t)-u_h(t)+e_h(t)\) with \(u_h(t)\) being the solution of the standard Galerkin finite element scheme in (3.1). Since the error \(\Vert u(t)-u_h(t)\Vert \) is estimated in Theorems 3.1 and 3.2 , then we next focus on the estimate of \(\Vert e_h(t)\Vert \).

Proof of Theorem 3.3

As \((s^{\alpha }-{\bar{\Delta }}_{h})^{-1}{\bar{\Delta }}_h=s^{\alpha } (s^{\alpha }-{\bar{\Delta }}_{h})^{-1}-I\) with I being the identity operator, it follows from the resolvent estimate of \({\bar{\Delta }}_{h}\) that \(\Vert (s^{\alpha }-{\bar{\Delta }}_{h})^{-1}{\bar{\Delta }}_h\Vert \le M+1\). Then we derive from (A.11) and (A.9) with \(u^0(x)\equiv 0\) that

$$\begin{aligned} \Vert e_h(t)\Vert \le c\int _{\Gamma _{\varepsilon }^{\theta }\cup S_{\varepsilon }}|e^{st}||s|^{\alpha }\Vert Q_h{\hat{u}}_h(s)\Vert |\mathrm {d}s|. \end{aligned}$$
(A.12)

By the trivial inequality \(\Vert \psi \Vert \le c\Vert \nabla \psi \Vert \) for \(\psi \in X_h\) and the estimate (A.5), it yields

$$\begin{aligned} \Vert Q_h{\hat{u}}_h(s)\Vert \le \Vert \nabla Q_h{\hat{u}}_h(s)\Vert \le ch\Vert {\hat{u}}_h(s)\Vert . \end{aligned}$$

Together with (A.9), we obtain the estimate (3.12) by (3.6) and the following argument

$$\begin{aligned} \begin{aligned} \Vert e_h(t)\Vert&\le ch\int _{\Gamma _{\varepsilon }^{\theta }\cup S_{\varepsilon }} |e^{st}||s|^{-\mu -1}|\mathrm {d}s|\\&\le ch\left( \int _{\varepsilon }^{\infty }e^{\rho \cos \theta t}\rho ^{-\mu -1} \mathrm {d}\rho +\int _{-\theta }^{\theta }e^{\varepsilon t\cos \xi }\varepsilon ^{-\mu } \mathrm {d}\xi \right) \\&\le ct^{\mu }h. \end{aligned} \end{aligned}$$

If the quadrature error operator \(Q_h\) satisfies (A.6), then it follows the estimate (3.13) from (3.6) and

$$\begin{aligned} \begin{aligned} \Vert e_h(t)\Vert&\le c\int _{\Gamma _{\varepsilon }^{\theta }\cup S_{\varepsilon }}|e^{st}||s|^{\alpha }\Vert {\hat{u}}_h(s)\Vert |\mathrm {d}s| \le ch^2\int _{\Gamma _{\varepsilon }^{\theta }\cup S_{\varepsilon }} |e^{st}||s|^{-\mu -1}|\mathrm {d}s|\\&\le ct^{\mu }h^2. \end{aligned} \end{aligned}$$

This completes the proof. \(\square \)

B Four Lemmas

We provide four preliminary lemmas for the error analysis of the GLBE scheme (4.9) and the FBDF22 scheme (4.33).

Lemma B.1

If \(z\in \Sigma _{\pi /2}\), then \((1-e^{-z})^{\alpha }\in \Sigma _{\alpha \pi /2}\). Otherwise if \(z\in \Sigma _{\theta }\setminus \Sigma _{\pi /2}\) and its imaginary part satisfying \(|\Im (z)|\le \pi \) for \(\theta \in (\pi /2,\pi )\), then \((1-e^{-z})^{\alpha }\in \Sigma _{\alpha \theta }\).

Proof

If \(z=x+iy\in \Sigma _{\pi /2}\), then \(x>0\). This yields that the real part of \((1-e^{-z})\) satisfies

$$\begin{aligned} \Re (1-e^{-z})=1-e^{-x}\cos y>0 \end{aligned}$$

for all \(y\in \mathbb {R}\). Then we obtain \((1-e^{-z})\in \Sigma _{\pi /2}\) and \((1-e^{-z})^{\alpha }\in \Sigma _{\alpha \pi /2}\).

Otherwise if \(z\in \Sigma _{\theta }\setminus \Sigma _{\pi /2}\), then \(x\le 0\) and \(x\tan \theta \le | y|\le \pi \). It suffices to consider the case \(\Re (1-e^{-z})<0\). We define

$$\begin{aligned} f(x,y):=\Big |\frac{\Im (1-e^{-z})}{\Re (1-e^{-z})}\Big |=\frac{|\sin y|}{\cos y -e^{x}}. \end{aligned}$$

From

$$\begin{aligned} \frac{\partial f(x,y)}{\partial y} =\frac{1-e^{x}\cos y}{\left( \cos y -e^{x}\right) ^{2}}\ge 0\quad \text {for}\quad x\tan \theta \le y\le \pi \end{aligned}$$

and

$$\begin{aligned} \frac{\partial f(x,y)}{\partial y}=\frac{e^{x}\cos y-1}{\left( \cos y-e^{x}\right) ^{2}}\le 0 \quad \text {for}\quad -\pi \le y\le -x\tan \theta <0, \end{aligned}$$

it follows that \(f(x,y)\ge f(x,x\tan \theta )\) for \(x\le 0\). Taking the derivative of \({\tilde{f}}(x,{\theta }):=f(x,x\tan \theta )\) with respect to x arrives at

$$\begin{aligned} \frac{\partial {\tilde{f}}}{\partial x}=\frac{\tan \theta +e^{x}\sin (x\tan \theta )-e^{x}\cos (x\tan \theta )\tan \theta }{\left( \cos (x\tan \theta )-e^{x}\right) ^{2}}=:\frac{g(x,\theta )}{\left( \cos (x\tan \theta )-e^{x}\right) ^{2}}. \end{aligned}$$

From \(\partial g/\partial x=e^{x}\sin (x\tan \theta )(1+\tan ^{2}\theta )\ge 0\), it follows that \(g(x,\theta )\le g(0,\theta )=0\). This leads to \({\tilde{f}}(x,{\theta })\ge {\tilde{f}}(0,{\theta })=-\tan \theta \) for any \(\theta \in (\pi /2,\pi )\). Therefore, we obtain \((1-e^{-z})\in \Sigma _{\theta }\) and the desired result. \(\square \)

Lemma B.2

If \(z\in {\mathbb {C}}\) and \(|z|\le r\) for finite \(r>0\), then

$$\begin{aligned} |1-e^{-z}|\le C|z| \end{aligned}$$
(B.1)

and

$$\begin{aligned} |z^{\beta }-(1-e^{-z})^{\beta }|\le C|z|^{\beta +1} \end{aligned}$$
(B.2)

hold for \(0<\beta \le 1\), where C denotes a generic constant dependent on the radius r.

Proof

Using Taylor’s expansion of \(e^{-z}\) at 0, we derive

$$\begin{aligned} |1-e^{-z}|=|1-\sum _{n=0}^{\infty }\frac{(-z)^{n}}{\Gamma (n+1)}|\le e^{|z|}-1\le \frac{e^{r}-1}{r} |z|, \end{aligned}$$

where the last inequality follows from the relation that \(\frac{e^{|z|}-1}{|z|}=\sum \limits _{n=1}^{+\infty }\frac{|z|^{n-1}}{n!}\le \sum \limits _{n=1}^{+\infty }\frac{r^{n-1}}{n!}=\frac{e^{r}-1}{r}\) for \(|z|\le r\). Similarly, we get

$$\begin{aligned} |z-(1-e^{-z})|=|z-1+\sum _{n=0}^{\infty }\frac{(-z)^{n}}{\Gamma (n+1)}| \le e^{|z|}-1-|z|\le \frac{e^{r}-1-r}{r^{2}}|z|^{2}. \end{aligned}$$

Furthermore, for \(0<\beta <1\), by the result in [16, 23], we have

$$\begin{aligned} |z^{\beta }-(1-e^{-z})^{\beta }|\le \max \{|z|^{\beta -1}, |1-e^{-z}|^{\beta -1}\} |z-(1-e^{-z})|, \end{aligned}$$

which completes the proof. \(\square \)

Lemma B.3

Let \(|z|\le r\) for finite r. Then it holds that

$$\begin{aligned} \begin{aligned}&|\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z}|\le C|z|, \\&|z^{\beta }-(\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})^{\beta }|\le C|z|^{\beta +2} \end{aligned} \end{aligned}$$
(B.3)

for \(0<\beta \le 1\), where \(C=C(r)\).

Proof

Using Taylor’s expansions of \(e^{-z}\) and \(e^{-2z}\) at \(z=0\) arrives at

$$\begin{aligned} \begin{aligned} \Big |\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z}\Big |&=\Big |-2\sum _{n=1}^{\infty }\frac{(-z)^{n}}{\Gamma (n+1)} +\frac{1}{2}\sum _{n=1}^{\infty }\frac{(-2z)^{n}}{\Gamma (n+1)}\Big | \\&\le 2(e^{|z|}-1)+\frac{1}{2}(e^{2|z|}-1) \\&\le \Big (\frac{1}{2}e^{2r}+2e^{r}-\frac{5}{2}\Big )r^{-1}|z| \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \Big |z-\frac{3}{2}+2e^{-z}-\frac{1}{2}e^{-2z}\Big |&\le 2\Big (e^{|z|}-\frac{1}{2}|z|^{2}-|z|-1\Big )+\frac{1}{2} \big (e^{2|z|}-2|z|^{2}-2|z|-1\big ) \\&\le \Big (\frac{1}{2}e^{2r}+2e^{r}-2r^{2}-3r-\frac{5}{2}\Big )r^{-3}|z|^{3}. \end{aligned} \end{aligned}$$

Then the second estimate of (B.3) is derived from the approach proposed in [16, 23]. \(\square \)

Lemma B.4

If \(z\in \Sigma _{\pi /2}\), then \((\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})^{\alpha }\in \Sigma _{\alpha \pi /2}\). Otherwise if \(z\in \Sigma _{\theta }\setminus \Sigma _{\pi /2}\) for \(\theta \in (\pi /2, {\tilde{\theta }})\) with some \({\tilde{\theta }}\in (\pi /2,\pi )\) and \(|\Im z|\le \pi \), then there corresponds some \(\vartheta \in (\pi /2,\pi )\) such that \((\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})^{\alpha }\in \Sigma _{\alpha \vartheta }\).

Proof

For \(z=x+iy\in \Sigma _{\pi /2}\), it follows that \(x>0\) and then

$$\begin{aligned} \begin{aligned} \Re \Big (\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z}\Big )&=\frac{3}{2}-2e^{-x} \cos y+\frac{1}{2}e^{-2x}\cos (2y)\\&=\frac{1}{2}(1-e^{-2x})+(1-e^{-x}\cos y)^{2}>0. \end{aligned} \end{aligned}$$

This yields \(\left( \frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z}\right) ^{\alpha }\in \Sigma _{\alpha \pi /2}\).

If \(z\in \Sigma _{\theta }\setminus \Sigma _{\pi /2}\) and \(|\Im z|\le \pi \), then \(x\tan \theta \le |y|\le \pi \) and \(x\in [\pi /\tan \theta ,0]\). It yields

$$\begin{aligned} \Im (\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})=e^{-x}\sin y(2-e^{-x}\cos y). \end{aligned}$$

Set \(g(x,y)=2-e^{-x}\cos y\). We find that \(\partial g/\partial y\ge 0\) for \(y\in [x\tan \theta ,\pi ]\) and \(\partial g/\partial y\le 0\) for \(y\in [-\pi ,-x\tan \theta ]\). This leads to \(g(x,y)\ge g(x,x\tan \theta )\). Then taking the derivative of \(g(x,x\tan \theta )\) with respect to x, we get

$$\begin{aligned} g(x,y)\ge 2-e^{-(\theta -\pi /2)/\tan \theta }\sin \theta :={\tilde{g}}(\theta ) >{\tilde{g}}({\tilde{\theta }})=0 \end{aligned}$$

for \(\theta \in (\pi /2, {\tilde{\theta }})\), where \({\tilde{\theta }}\) is implicitly determined by \({\tilde{g}}({\tilde{\theta }})=0\) as \(\mathrm {d}{\tilde{g}}/\mathrm {d}\theta <0\) for \(\theta \in (\pi /2,\pi )\).

Next it suffices to consider the case \(\theta \in (\pi /2,{\tilde{\theta }})\) and \(\Re (\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})<0\). Let

$$\begin{aligned} f(x,y):=\Big |\frac{\Im (\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})}{\Re (\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})}\Big | =\frac{e^{-x}|\sin y|(2-e^{-x}\cos y)}{-\frac{3}{2}+2e^{-x}\cos y-\frac{1}{2}e^{-2x}\cos (2y)}. \end{aligned}$$

For \(y\in [0, \pi ]\), we obtain

$$\begin{aligned} \frac{\partial f(x,y)}{\partial x}=\frac{e^x\sin y\left( 1-3e^{x}\cos y+3e^{2x}\right) }{\left( \frac{3}{2}e^{2x}-2e^{x}\cos y+\frac{1}{2}\cos (2y)\right) ^{2}}\ge 0 \end{aligned}$$

in view of

$$\begin{aligned} 1-3e^{x}\cos y+3e^{2x}\ge 1-3e^{x}+3e^{2x}=3(e^{x}-\frac{1}{2})^{2}+\frac{1}{4}>0. \end{aligned}$$

Together with \(f(x,y)=f(x,-y)\), it holds that

$$\begin{aligned} f(x,\pm y)\ge f(y/\tan \theta ,y):={\tilde{f}}(y,\theta ) \end{aligned}$$

for \(0\le y\le \pi \). Similarly, from the relation \(\frac{\partial {\tilde{f}}(y,\theta )}{\partial \theta } =\frac{\partial f}{\partial x}(y/\tan \theta ,y)\frac{\mathrm {d}(y/\tan \theta )}{\mathrm {d}\theta }<0\) together with \({\tilde{f}}(0,\theta )=-\tan \theta >0\) and \(\Re (3/2-2e^{-z}+1/2e^{-2z})>0\) for \(y=\pi \), it follows that \({\tilde{f}}(y,\theta )>0\) for any \(\theta \in (\pi /2,{\tilde{\theta }})\). Then taking the derivative of \({\tilde{f}}\) with respect to y, we deduce that

$$\begin{aligned} {\tilde{f}}(y,\theta )\ge {\tilde{f}}(y_{\theta },\theta )>0, \end{aligned}$$

where \(y_{\theta }\) satisfies \(\frac{\partial {\tilde{f}}}{\partial y}(y_{\theta },\theta )=0\). Thus there corresponds some \(\vartheta \in (\pi /2,\pi )\), defined by \({\tilde{f}}(y_{\theta },\theta )=-\tan (\vartheta )\) such that \((\frac{3}{2}-2e^{-z}+\frac{1}{2}e^{-2z})\in \Sigma _{\vartheta }\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Tian, W. Two Time-Stepping Schemes for Sub-Diffusion Equations with Singular Source Terms. J Sci Comput 92, 70 (2022). https://doi.org/10.1007/s10915-022-01914-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01914-8

Keywords

Mathematics Subject Classification

Navigation