Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Linearized Compact ADI Scheme for Semilinear Parabolic Problems with Distributed Delay

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Effective compact alternating direction implicit (ADI) schemes are developed for solving the semilinear parabolic problems with distributed delay. Solvability, convergence and stability of the proposed linearized schemes are studied. After that, the schemes are applied to simulate several biological models. It is shown that the obtained numerical schemes produce better convergent results than the usual ADI method, without increasing extra computational cost. The numerical results fit well the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu, J.: Theory and Application of Partial Functional Differential Equation. Springer, New York (1996)

    Book  Google Scholar 

  2. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2012)

    Book  MATH  Google Scholar 

  3. Yi, T., Zou, X.: Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case. J. Differ. Equ. 245, 3376–3388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Smith, H., Zhao, X.: Global asymptotic stability of traveling waves in delayed reaction–diffusion equations. SIAM J. Math. Anal. 31, 514–534 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu, C., Mu, C.: Exponential decay estimates for time-delayed Benjamin-Bona-Mahony equations. Appl. Anal. 87(4), 401–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alvarez-Vázquez, L.J., Fernández, F.J., Muñoz-Sola, R.: Analysis of a multistate control problem related to food technology. J. Differ. Equ. 245, 130–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aguerrea, M., Trofimchuk, S., Valenzuela, G.: Uniqueness of fast travelling fronts in reaction–diffusion equations with delay. Proc. R. Soc. A Math. Phys. 464(2098), 2591–2608 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Methods Appl. 14, 355–376 (2021)

    Article  MathSciNet  Google Scholar 

  9. Culshaw, R.V., Ruan, S., Webb, G.: A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. J. Math. Biol. 46, 425–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gourley, S.A., Kuang, Y.: A delay reaction–diffusion model of the spread of bacteriophage infection. SIAM J. Appl. Math. 65(2), 550–566 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Faria, T., Trofimchuk, S.: Nonmonotone travelling waves in a single species reaction–diffusion equation with delay. J. Differ. Equ. 228(1), 357–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. So, J.W.H., Wu, J., Zou, X.: A reaction–diffusion model for a single species with age structure. I travelling wavefronts on unbounded domains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci 457, 1841–1853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  14. Zhang, C., Vandewalle, S.: General linear methods for Volterra integro-differential equations with memory. SIAM J. Sci. Comput. 27, 2010–2031 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Sci. Comput. 25, 1608–1632 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zubik-Kowal, B.: Stability in the numerical solution of linear parabolic equations with a delay term. BIT 41, 191–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Araújo, A., Branco, J.R., Ferreira, J.A.: On the stability of a class of splitting methods for integro-differential equations. Appl. Numer. Math. 59, 436–453 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D., Zhang, C., Wang, W.: Long time behavior of non-Fickian delay reaction–diffusion equations. Nonlinear Anal. RWA 13(3), 1401–1415 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, H., Zhang, C.: Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations. Appl. Numer. Math. 62(2), 141–154 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, Z., Wu, F., Qin, H.: An effective numerical algorithm based on stable recovery for partial differential equations with distributed delay. IEEE Access 6(1), 72117–72124 (2018)

    Article  Google Scholar 

  21. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Pang, P.Y., Wang, Y.: Time periodic solutions of the diffusive Nicholson blowflies equation with delay. Nonlinear Anal. Real 22(1), 44–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, G., Xiao, A.: Exact and numerical stability analysis of reaction–diffusion equations with distributed delays. Front. Math. China 11(1), 189–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, Z.Z., Zhang, Z.: A linearized compact difference scheme for a class of nonlinear delay partial differential equations. Appl. Math. Model. 37(3), 742–752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Cong, Y., Hu, G.: Delay-dependent stability of linear multistep methods for differential systems with distributed delays. Appl. Math. Mech. Engl. 39, 1837–1844 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, D., Zhang, C.: Superconvergence of a discontinuous Galerkin method for first-order linear delay differential equations. J. Comput. Math. 29(5), 574–588 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, D., Zhang, C., Wen, J.: A note on compact finite difference method for reaction–diffusion equations with delay. Appl. Math. Model. 39, 1749–1754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bhrawy, A.H., Abdelkawy, M.A., Mallawi, F.: An accurate Chebyshev pseudospectral scheme for multi-dimensional parabolic problems with time delays. Bound. Value Probl. 1(103), 1–20 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Qin, H., Wang, Z., Zhu, F., Wen, J.: Stability analysis of additive Runge–Kutta methods for delay-integro-differential equations. Int. J. Differ. Equ. 2018, 1–5 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Li, D., Zhang, C., Qin, H.: LDG method for reaction–diffusion dynamical systems with time delay. Appl. Math. Comput. 217, 9173–9181 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Li, D., Zhang, C.: Nonlinear stability of discontinuous Galerkin methods for delay differential equations. Appl. Math. Lett. 23, 457–461 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, J., Zhang, Z.: The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction–diffusion equations with variable coefficients. Comput. Math. Appl. 75(10), 3558–3570 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gan, S.: Dissipativity of \(\theta \)-methods for nonlinear Volterra delay-integro-differential equations. J. Comput. Appl. Math. 206, 898–907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sevgin, S.: Numerical solution of a singularly perturbed Volterra integro-differential equation. Adv. Differ. Equ. 2014, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Selvi, P.A., Ramanujam, N.: A parameter uniform difference scheme for singularly perturbed parabolic delay differential equation with Robin type boundary condition. Appl. Math. Comput. 296, 101–115 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, Q., Li, D., Zhang, C., Xu, D.: Multistep finite difference schemes for the variable coefficient delay parabolic equations. J. Differ. Equ. Appl. 22(6), 745–765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, F., Li, D., Wen, J., Duan, J.: Stability and convergence of compact finite difference method for parabolic problems with delay. Appl. Math. Comput. 322, 129–139 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Ran, M., He, Y.: Linearized Crank-Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay. Int. J. Comput. Math. 95(12), 2458–2470 (2018)

    Article  MathSciNet  Google Scholar 

  39. Hattaf, K., Yousfi, N.: A generalized HBV model with diffusion and two delays. Comput. Math. Appl. 69(1), 31–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bani-Yaghoub, M., Yao, G., Voulov, H.: Existence and stability of stationary waves of a population model with strong Allee effect. J. Comput. Appl. Math. 307, 385–393 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of elliptic and parabolic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MATH  Google Scholar 

  42. Liao, H., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differ. Equ. 26, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Brunner, H., van der Houwen, P.J.: The Numerical solution of Volterra equations. In: CWI Monographs, vol. 3. North-Holland, Amsterdam (1986)

  44. Zhang, C., Vandewalle, S.: Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization. J. Comput. Appl. Math. 164(1), 797–814 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, H., Wu, Y., Tian, W.: Extrapolation algorithm of compact ADI approximation for two-dimensional parabolic equation. Appl. Math. Comput. 219, 2875–2884 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Wu, F., Cheng, X., Li, D., Duan, J.: A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction–diffusion equations. Comput. Math. Appl. 75(8), 2835–2850 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, B., Zhang, C.: A spectral Galerkin method for nonlinear delay convection–diffusion–reaction equations. Comput. Math. Appl. 69, 709–724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Touaoula, T.M.: Global dynamics for a class of reaction–diffusion equations with distributed delay and Neumann condition. arXiv:1810.00975

  49. Berezansky, L., Braverman, E., Idels, L.: Nicholsons blowflies differential equations revisited: main results and open problems. Appl. Math. Model. 34(6), 1405–1417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gurney, W.S., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies. Nature 287, 17–21 (1980)

    Article  Google Scholar 

  51. Green Jr., D., Stech, H.W.: Diffusion and hereditary effects in a class of population models. Differ. Equ. Appl. Ecol. Epidem. Popul. Probl. 211, 19–28 (1981)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant Nos. 11771162, 12001067, 11771035, 11771062, 11971082), the Fundamental Research Funds for the Central Universities (Project No. 2019CDXYST0015, 2019CDJCYJ001, 2020CDJQY-Z001), China Postdoctoral Science Foundation funded project No. 2019M653333, and Natural Science Foundation of Chongqing, China, No. cstc2019jcyj-bshX0038.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Wu, F., Zhang, J. et al. A Linearized Compact ADI Scheme for Semilinear Parabolic Problems with Distributed Delay. J Sci Comput 87, 25 (2021). https://doi.org/10.1007/s10915-021-01441-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01441-y

Keywords

Navigation