Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A high-order compact ADI scheme for two-dimensional nonlinear Schrödinger equation with time fractional derivative

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we mainly study the high-order compact alternating direction implicit (ADI) scheme of the two-dimensional nonlinear Schrödinger equation with the Caputo fractional derivative. We adopt the L2-1\(_{\sigma }\) formula to approximate the Caputo fractional derivative for the temporal discretization and the fourth-order compact finite difference method to approximate the second order spatial derivatives for the spatial discretization. In order to reduce the computational cost and memory, the nonlinear term is handled by local extrapolation method. By adding the splitting term, a compact ADI scheme is proposed for the model. The convergence of numerical schemes has been rigorously proven. Finally, a series of numerical experiments are proposed to confirm the theory results and simulate the dynamics of solution. It is not difficult to find that the proposed scheme converges with accuracy \(O(\tau ^{1+\alpha }+h_x^4+h_y^4)\) which is consistent with the theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from corresponding author upon reasonable request.

References

  • Alikhanov A (2015) A new difference scheme for time fractional diffusion equation. J Comput Phys 280(1):424–438

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Abdelkawy M (2015) A fully spectral collocation approximation for multidimensional fractional Schrödinger equations. J Comput Phys 294:462–483

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Lü S (2022) Spectral approximation for nonlinear time fractional Schrödinger equation on graded meshes. Int J Comput Math 99(12):2524–2541

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Di Y, Duan J, Li D (2018) Linearized compact ADI schemes for nonlinear time-fractional Schrödinger equations. Appl Math Lett 84:160–167

    Article  MathSciNet  MATH  Google Scholar 

  • Cui M (2009) Compact finite difference method for the fractional diffusion equation. J Comput Phys 228:7792–7804

    Article  MathSciNet  MATH  Google Scholar 

  • Deng W, Hesthaven J (2013) Local discontinuous Galerkin methods for fractional diffusion equations. Math Model Numer Anal 47:1845–1864

    Article  MathSciNet  MATH  Google Scholar 

  • Gao G, Sun Z (2011) A compact finite difference scheme for the fractional sub-diffusion equation. J Comput Phys 230:586–595

    Article  MathSciNet  MATH  Google Scholar 

  • Gao G, Sun Z, Zhang Y (2012) A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J Comput Phys 231:2865–2879

    Article  MathSciNet  MATH  Google Scholar 

  • Ge A, Shen J, Vong S (2023) Space-time methods based on isogeometric analysis for time-fractional Schrödinger equation. J Sci Comput 97(3):76

    Article  MATH  Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Hu H, Chen Y, Zhou J (2024) Two-grid finite element method on grade meshes for time-fractional nonlinear Schödinger equation. Numer Methods Partial Differ Equ 40(2):e23073

    Article  MATH  Google Scholar 

  • Jia J, Jiang X, Zhang H (2021) An L1 Legendre–Galerkin spectral method with fast algorithm for the two-dimensional nonlinear coupled time fractional Schrödinger equation and its parameter estimation. Comput Math Appl 82:13–35

    Article  MathSciNet  MATH  Google Scholar 

  • Li M (2022) Cut-off error splitting technique for conservative nonconforming VEM for N-coupled nonlinear Schrödinger–Boussinesq equations. J Sci Comput 93:86

    Article  MATH  Google Scholar 

  • Li D, Wang J, Zhang J (2017) Unconditionally convergent L-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J Sci Comput 39:A3067–A3088

    Article  MATH  Google Scholar 

  • Li D, Liao H, Sun W, Wang J, Zhang J (2018a) Analysis of \(L\)-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun Comput Phys 24:86–103

    Article  MathSciNet  MATH  Google Scholar 

  • Li M, Gu X, Huang C, Fei M, Zhang G (2018b) A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J Comput Phys 358:256–282

    Article  MathSciNet  MATH  Google Scholar 

  • Li M, Zhao J, Wang N, Chen S (2021) Conforming and nonconforming conservative virtual element methods for nonlinear Schrödinger equation: a unified framework. Comput Methods Appl Mech Eng 380:113793

    Article  MATH  Google Scholar 

  • Li M, Wei Y, Niu B, Zhao Y (2022) Fast L2–1\(_\sigma \) Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives. Appl Math Comput 416:126734

    MATH  Google Scholar 

  • Liang X, Khaliq A, Xing Y (2015) Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun Comput Phys 17:510–541

    Article  MathSciNet  MATH  Google Scholar 

  • Liao H, Sun Z (2010) Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer Methods Partial Differ Equ 26:37–60

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Wang T, Zhang T (2023) A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer Algorithms 92:1153–1182

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  • Mohebbi A, Abbaszadeh M, Dehghan M (2013) The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng Anal Bound Elem 37:475–485

    Article  MathSciNet  MATH  Google Scholar 

  • Mustapha K (2015) Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer Math 130(3):497–516

    Article  MathSciNet  MATH  Google Scholar 

  • Naber M (2004) Time fractional Schrödinger equation. J Math Phys 45:3339–3352

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional difference equations. Math Sci Eng Academic Press, San Diego, Calif, USA, vol.198

  • Roop J (2006) Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(R^2\). J Comput Appl Math 193(1):243–268

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Wang G, Bu L, Mei L (2021) Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer Algorithms 88:419–451

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Q, Hesthaven J (2014) Discontinuous Galerkin method for the fractional convection-diffusion equations. SIAM J Numer Anal 52(1):405–423

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Chen Y, Huang Y (2014) Convergence analysis of the Jacobi spectral-collocation method for fractional integro-diferential equations. Acta Math Sci 34(3):673–690

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Chen Y, Huang Y, Wei H (2017) Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput Math Appl 73(6):1218–1232

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Huang Y, Zhou Y (2018) Numerical solutions for solving time fractional Fokker–Planck equations based on spectral collocation methods. J Comput Appl Math 339:389–404

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Wang J, Zhang S, Tohidi E (2020) Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrödinger equations. Appl Math Comput 387:124489

    MathSciNet  MATH  Google Scholar 

  • Yuste S, Acedo L (2005) An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J Numer Anal 42:1862–1874

    Article  MathSciNet  MATH  Google Scholar 

  • Zhai S, Feng X, He Y (2014) An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J Comput Phys 269:138–155

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Li D, Antoine X (2019) Efficient numerical computation of the time-fractional nonlinear Schrödinger equations in unbounded domain. Commun Comput Phys 25:218–243

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Sun Z (2014) Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J Sci Comput 59:104–128

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhi Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is part supported by the NSF of China (No. 12361074), Natural science Foundation of Guangxi (No. 2020GXNSFAA297223), the NSF of China (Nos. 11861054, U19A2079, 11671345 and 11771348) and Innovation Project of Guangxi Graduate Education, China (No. YCSW2023132).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Feng, X. & Qian, L. A high-order compact ADI scheme for two-dimensional nonlinear Schrödinger equation with time fractional derivative. Comp. Appl. Math. 44, 168 (2025). https://doi.org/10.1007/s40314-025-03127-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-025-03127-9

Keywords

Mathematics Subject Classification