Abstract
In this paper, we propose to combine a new fifth order finite difference weighted essentially non-oscillatory (WENO) scheme with high order fast sweeping methods, for directly solving static Hamilton–Jacobi equations. This is motivated by the work in Xiong et al. (J Sci Comput 45(1–3):514–536, 2010), where a fifth order fast sweeping method base on the classical finite difference WENO scheme is developed. Numerical results in Xiong et al. (2010) show that the iterative numbers of the scheme for some cases are very sensitive to the parameter \(\epsilon \), which is used to avoid the denominator to be 0 in the nonlinear weights. Here we propose to use the new fifth order finite difference WENO-ZQ scheme, which was recently developed in Zhu and Qiu (J Comput Phys 318:110–121, 2016), to alleviate this problem. Besides, to save computational cost from WENO reconstructions, a hybrid finite difference linear and WENO scheme is used, which works more robustly. Numerical experiments will be performed to demonstrate the good performance of the new proposed approach.
Similar content being viewed by others
References
Boué, M., Dupuis, P.: Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control. SIAM J. Numer. Anal. 36(3), 667–695 (1999)
Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)
Fomel, S., Luo, S., Zhao, H.K.: Fast sweeping method for the factored eikonal equation. J. Comput. Phys. 228, 6440–6455 (2009)
Helmsen, J., Puckett, E., Colella, P., Dorr, M.: Two new methods for simulating photolithography development in 3D. Proc. SPIE 2726, 253–262 (1996)
Huang, L., Shu, C.-W., Zhang, M.P.: Numerical boundary conditions for the fast sweeping high order WENO methods for solving the Eikonal equation. J. Comput. Math. 26(3), 336–346 (2008)
Huang, L., Wong, S.C., Zhang, M., Shu, C.-W., Lam, W.H.K.: Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp. Res. B-Meth. 43(1), 127–141 (2009)
Jiang, G.S., Peng, D.P.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput 21(6), 2126–2143 (2000)
Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)
Kao, C.-Y., Osher, S., Qian, J.: Lax–Friedrichs sweeping scheme for static Hamilton–Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004)
Kao, C.-Y., Osher, S., Tsai, Y.H.: Fast sweeping methods for static Hamilton–Jacobi equations. SIAM J. Numer. Anal. 42(6), 2612–2632 (2005)
Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws, M2AN. Math. Model. Numer. Anal. 33(3), 547–571 (1999)
Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)
Li, F., Shu, C.-W., Zhang, Y.-T., Zhao, H.: Second order discontinuous Galerkin fast sweeping method for Eikonal equations. J. Comput. Phys. 227(17), 8191–8208 (2008)
Luo, S.: A uniformly second order fast sweeping method for Eikonal equations. J. Comput. Phys. 241(10), 104–117 (2013)
Lin, J., Abgrall, R., Qiu, J.: High order residual distribution for steady state problems for hyperbolic conservation laws. J. Sci. Comput 79(2), 891–913 (2019)
Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)
Qian, J., Cheng, L.T., Osher, S.: A level set based Eulerian approach for anisotropic wave propagations. Wave. Motion. 37(4), 365–379 (2003)
Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton–Jacobi equations. J. Sci. Comput. 31(1), 237–271 (2007)
Serna, S., Qian, J.: A stopping criterion for higher-order sweeping schemes for static Hamilton–Jacobi equations. J. Comput. Math. 28(4), 552–568 (2010)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)
Shu, C.-W.: High order numerical methods for time dependent Hamilton–Jacobi equations. Math. Comput. Imaging Sci. Inf. Process. (2007)
Tan, S., Shu, C.-W.: Inverse Lax–Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229(21), 8144–8166 (2010)
Tsai, R., Cheng, L.T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)
Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Contr. 40(9), 1528–1538 (1995)
Versteeg, R.: The Marmousi experience: velocity model determination on a synthetic complex data set. Lead. Edge 13(09), 927–936 (1994)
Wu, L., Zhang, Y.-T.: A third order fast sweeping method with linear computational complexity for Eikonal equations. J. Sci. Comput. 62(1), 198–229 (2015)
Xia, Y., Wong, S.C., Zhang, M., Shu, C.-W., Lam, W.H.K.: An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model. Int. J. Numer. Meth. Eng. 76(3), 337–350 (2008)
Xiong, T., Zhang, M.P., Zhang, Y.-T., Shu, C.-W.: Fast sweeping fifth order WENO scheme for static Hamilton–Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45(1–3), 514–536 (2010)
Zhang, Y.-T., Chen, S., Li, F., Zhao, H.-K., Shu, C.-W.: Uniformly accurate discontinuous Galerkin fast sweeping methods for Eikonal equations. SIAM J. Sci. Comput. 33(4), 1873–1896 (2011)
Zhang, Y.-T., Zhao, H.-K., Qian, J.: High Order fast sweeping methods for static Hamilton–Jacobi equations. J. Sci. Comput. 29(1), 25–56 (2006)
Zhao, H.-K.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)
Zhao, H.-K., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image. Und. 80(3), 295–314 (2000)
Zhao, Z., Zhu, J., Chen, Y., Qiu, J.: A new hybrid WENO scheme for hyperbolic conservation laws. Comput. Fluids. 179, 422–436 (2019)
Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton–Jacobi equations. Numer. Meth. Part. D. E. 33(4), 1095–1113 (2017)
Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)
Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws 73(2–3), 1338–1359 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The research is partly supported by NSAF Grant U1630247, Science Challenge Project, No. TZ2016002, NSFC Grant 11971025, NSF Grant of Fujian Province 2019J06002 and Sino-German Research Group Project, No. GZ. 1465.
Rights and permissions
About this article
Cite this article
Ren, Y., Xiong, T. & Qiu, J. A Hybrid Finite Difference WENO-ZQ Fast Sweeping Method for Static Hamilton–Jacobi Equations. J Sci Comput 83, 54 (2020). https://doi.org/10.1007/s10915-020-01228-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01228-7