Abstract
We construct high order fast sweeping numerical methods for computing viscosity solutions of static Hamilton–Jacobi equations on rectangular grids. These methods combine high order weighted essentially non-oscillatory (WENO) approximations to derivatives, monotone numerical Hamiltonians and Gauss–Seidel iterations with alternating-direction sweepings. Based on well-developed first order sweeping methods, we design a novel approach to incorporate high order approximations to derivatives into numerical Hamiltonians such that the resulting numerical schemes are formally high order accurate and inherit the fast convergence from the alternating sweeping strategy. Extensive numerical examples verify efficiency, convergence and high order accuracy of the new methods.
Similar content being viewed by others
References
Abgrall R. (1996). Numerical discretization of the first-order Hamilton–Jacobi equation on triangular meshes. Commun. Pure Appl. Math. 49, 1339–1373
Augoula S., Abgrall R. (2000). High order numerical discretization for Hamilton–Jacobi equations on triangular meshes. J. Sci. Comput. 15, 197–229
Boué M., Dupuis P. (1999). Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control. SIAM J. Numer. Anal. 36, 667–695
Bryson S.,Levy D. (2003). High-order central WENO schemes for multidimensional Hamilton–Jacobi equations. SIAM J Numer. Anal. 41, 1339–1369
Barth T., Sethian J. (1998). Numerical schemes for the Hamilton–Jacobi and level set equations on triangulated domains J. Comput. Phys. 145, 1–40
Cecil T., Qian J., Osher S. (2004). Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J. Comput. Phys. 196, 327–347
Crandall M.G., Lions P.L. (1983). Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 277, 1–42
Dellinger, J., and Symes, W. W. (1997). Anisotropic finite-difference traveltimes using a Hamilton–Jacobi solver, 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1786–1789
Falcone M., Ferretti R. (1994). Discrete time high-order schemes for viscosity solutions of Hamilton–Jacobi–Bellman equations Numer. Math. 67, 315–344
Falcone M., Ferretti R. (2002). Semi-Lagrangian schemes for Hamilton–Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175, 559–575
Gray S., May W. (1994). Kirchhoff migration using eikonal equation travel-times. Geophysics 59, 810-817
Helmsen J., Puckett E., Colella P., Dorr M. (1996) Two new methods for simulating photolithography development in 3d, Proc SPIE, 2726: 253–261
Hu C., Shu C.-W. (1999). A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci Comput. 20, 666–690
Jiang G.-S., Peng D. (2000). Weighted ENO Schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143
Jiang G.-S., Shu C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phy. 126, 202–228
Jin S., Xin Z. (1998). Numerical passage from systems of conservation laws to Hamilton–Jacobi equations and relaxation schemes. SIAM J. Numer. Anal. 35, 2385–2404
Kim S., Cook R. (1999). 3D traveltime computation using second-order ENO scheme. Geophys. 64, 1867–1876
Kao C.Y., Osher S., Qian J. (2004). Lax-Friedrichs sweeping scheme for static Hamilton–Jacobi equations. J Comput. Phys. 196, 367–391
Kao C.Y., Osher S., Tsai Y.H. (2005). Fast sweeping methods for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 42, 2612–2632
Lin C.-T., Tadmor E. (2000). High-resolution non-oscillatory central schemes for approximate Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2163–2186
Lin C.-T., Tadmor E. (2001). L 1-stability and error estimates for approximate Hamilton–Jacobi solutions. Numer Math. 87, 701–735
Osher S. (1993). A level set formulation for the solution of the Dirichlet problem for Hamilton–Jacobi equations. SIAM J. Math Anal. 24, 1145–1152
Osher S., Sethian J. (1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49
Osher S., Shu C.-W. (1991). High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer Anal. 28, 907–922
Peng D., Osher S., Merriman B., Zhao H.-K., Rang M. (1999). A PDE-based fast local level set method. J. Comput Phys. 155, 410–438
Qian J., Cheng L.T., Osher S. (2003). A level set based Eulerian approach for anisotropic wave propagations. Wave Motion 37, 365–379
Qian J., Symes W.W. (2001). Paraxial eikonal solvers for anisotropic quasi-P travel times. J. Comput Phys. 174, 256–278
Qian J., Symes W.W. (2002). Finite-difference quasi-P traveltimes for anisotropic media. Geophysics 67, 147–155
Qian J., Symes W.W. (2002). An adaptive finite-difference method for traveltime and amplitude. Geophysics 67, 166–176
Qin F., Schuster G. T. (1993). First-arrival traveltime calculation for anisotropic media. Geophysics 58, 1349–1358
Rouy E., Tourin A. (1992). A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29, 867–884
Sethian J.A. (1996). A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591–1595
Sethian J.A., Vladimirsky A. (2001). Ordered upwind methods for static Hamilton–Jacobi equations. Proc. Natl. Acad. Sci. 98, 11069–11074
Sethian J.A., Vladimirsky A. (2003) Ordered upwind methods for static Hamilton–Jacobi equations: theory and algorithms SIAM J. Numer. Anal. 41, 325–363
Chi-Wang Shu (2004) High Order Numerical Methods for Time Dependent Hamilton–Jacobi Equations, WSPC/Lecture Notes Series
Shu C.-W., Osher S. (1988) Efficient Implementation of essentially non-oscillatory shock-capturing schemes J. Comput. Phys. 77, 439–471
Tsai Y.-H. R., Cheng L.-T., Osher S., Zhao H.-K. (2003) Fast sweeping algorithms for a class of Hamilton–Jacobi equations SIAM J. Numer. Anal. 41, 673–694
Tsitsiklis J.N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Trans. Auto. Control 40, 1528–1538
Zhang Y.-T., Shu C.-W. (2003). High order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J Sci. Comput. 24, 1005–1030
Zhao H. (2004). A fast sweeping method for Eikonal equations. Math Comp. 74, 603–627
Zhao H., Osher S., Merriman B., Kang M. (2000). Implicit and non-parametric shape reconstruction from unorganized points using variational level set method. Comput. Vision Image Understand. 80, 295–319
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhang, YT., Zhao, HK. & Qian, J. High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations. J Sci Comput 29, 25–56 (2006). https://doi.org/10.1007/s10915-005-9014-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-005-9014-3