Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Robust Multilevel Preconditioner Based on a Domain Decomposition Method for the Helmholtz Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a robust multilevel preconditioner for the algebraic system resulting from the continuous interior penalty finite element method for the approximation of the Helmholtz equation. The key idea in this work is the replacement of traditional smoothers by the one level overlapping domain decomposition method on coarse grids. The proposed multilevel method then serves as a preconditioner in the outer GMRES iteration. Numerical results show that for fixed wave numbers, the convergence of our multilevel method is independent of the mesh size. Furthermore, the performance of the algorithm depends relatively mildly on the wave number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Burman, E., Wu, H., Zhu, L.: Linear continuous interior penalty finite element method for Helmholtz equation with high wave number: one-dimensional analysis. Numer. Methods Partial Differ. Equ. 32, 1378–1410 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandt, A., Livshits, I.: Wave-ray multigrid method for standing wave equations. Electron. Trans. Numer. Anal. 6, 162–181 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Cai, X., Saad, Y.: Overlapping domain decomposition algorithms for general sparse matrices. Numer. Linear Algebra Appl. 3, 221–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, X., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Wu, H., Xu, X.: Multilevel preconditioner with stable coarse grid corrections for the Helmholtz equation. SIAM J. Sci. Comput. 37, A221–A244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009)

  8. Chen, W., Liu, Y., Xu, X.: A robust domain decomposition method for the Helmholtz equation with high wave number. ESAIM-Math. Model. Numer. Anal. 50, 921–944 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain part II: extensions. Numer. Math. Theory Methods Appl. 6, 538–555 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51, 2331–2356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Després, B.: Domain decomposition method and helmholtz problem. In: Proc. Int. Symp. Mathemat. Numerical Aspects Wave Propagat. Phenomena, Strasbourg, pp 44–52 (1992)

  12. Elman, H.C., Ernst, O.G., O’Leary, D.P.: A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput. 23, 1291–1315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64, 697–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9, 686–710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erlangga, Y.A.: Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng. 15, 37–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50, 409–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erlangga, Y.A., Oosterlee, C.W., Vuik, C.: A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27, 1471–1492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farhat, C., Macedo, A., Tezaur, R.: FETI-H: A scalable domain decomposition method for high frequency exterior Helmholtz problem. In: Proceedings of the Eleventh International Conference on Domain Decomposition Methods, pp. 231–241 (1999)

  19. Farhat, C., Avery, P., Tezaur, R., Li, J.: FETI-DPH: a dual-primal domain decomposition method for accoustic scattering. J. Comput. Acoust. 13, 499–524 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47, 2872–2896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, X., Wu, H.: \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80, 1997–2024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44, 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24, 38–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gander, M.J., Halpern, L., Magoulès, F.: An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55, 163–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kimn, J.H., Sarkis, M.: Restricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem. Comput. Methods Appl. Mech. Eng. 196, 1507–1514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kimn, J.H., Sarkis, M.: Shifted Laplacian RAS solvers for the Helmholtz equation. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 91, pp. 151–158. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Liu, J.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34, 82–109 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Livshits, I., Brandt, A.: Accuracy properties of the wave-ray multigrid algorithm for Helmholtz equations. SIAM J. Sci. Comput. 28, 1228–1251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS, Boston (1995)

    Google Scholar 

  30. Vassilevski, P.S., Wang, J.: An application of the abstract multilevel theory to nonconforming finite element methods. SIAM J. Numer. Anal. 32, 235–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part I: linear version. IMA J. Numer. Anal. 34, 1266–1288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, X.: Multilevel schwarz methods. Numer. Math. 63, 521–539 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, L., Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: \(hp\) version. SIAM J. Numer. Anal. 51, 1828–1852 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank the editor and the anonymous referees, who meticulously read through the paper and made many helpful suggestions which led to an improved presentation of this paper.

Funding

The work of the Xuejun Xu was supported by National Natural Science Foundation of China (Grant Nos. 11671302 and 11871272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peipei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Xu, X. A Robust Multilevel Preconditioner Based on a Domain Decomposition Method for the Helmholtz Equation. J Sci Comput 81, 291–311 (2019). https://doi.org/10.1007/s10915-019-01015-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01015-z

Keywords

Navigation