Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Advances in Iterative Methods and Preconditioners for the Helmholtz Equation

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper we survey the development of fast iterative solvers aimed at solving 2D/3D Helmholtz problems. In the first half of the paper, a survey on some recently developed methods is given. The second half of the paper focuses on the development of the shifted Laplacian preconditioner used to accelerate the convergence of Krylov subspace methods applied to the Helmholtz equation. Numerical examples are given for some difficult problems, which had not been solved iteratively before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel S, Gottlieb D (1997) A mathematical analysis of the PML method. J Comput Phys 134:357–363

    MATH  MathSciNet  Google Scholar 

  2. Abarbanel S, Gottlieb D (1998) On the construction and analysis of absorbing layers in CEM. Appl Numer Math 27:331–340

    MATH  MathSciNet  Google Scholar 

  3. Alcouffe RE, Brandt A, Dendy JE Jr, Painter JW (1981) The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM J Sci Comput 2:430–454

    MATH  MathSciNet  Google Scholar 

  4. Arnoldi WE (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q Appl Math 9:17–29

    MathSciNet  Google Scholar 

  5. Babuska I, Sauter S (1997) Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?. SIAM J Numer Anal 27:323–352

    MathSciNet  Google Scholar 

  6. Babuska I, Ihlenburg F, Strouboulis T, Gangaraj SK (1997) Posteriori error estimation for finite element solutions of Helmholtz’s equation. Part I: the quality of local indicators and estimators. Int J Numer Methods Eng 40:3443–3462

    MATH  MathSciNet  Google Scholar 

  7. Babuska I, Ihlenburg F, Strouboulis T, Gangaraj SK (1997) Posteriori error estimation for finite element solutions of Helmholtz’s equation. Part II: estimation of the pollution error. Int J Numer Methods Eng 40:3883–3900

    MATH  MathSciNet  Google Scholar 

  8. Bamberger A, Joly P, Roberts JE (1990) Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem. SIAM J Numer Anal 27:323–352

    MATH  MathSciNet  Google Scholar 

  9. Bayliss A, Gunzburger M, Turkel E (1982) Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J Appl Math 42:430–451

    MATH  MathSciNet  Google Scholar 

  10. Bayliss A, Goldstein CI, Turkel E (1983) An iterative method for Helmholtz equation. J Comput Phys 49:443–457

    MATH  MathSciNet  Google Scholar 

  11. Bayliss A, Goldstein CI, Turkel E (1985) The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comput Math Appl 11:655–665

    MATH  MathSciNet  Google Scholar 

  12. Bayliss A, Goldstein CI, Turkel E (1985) On accuracy conditions for the numerical computation of waves. J Comput Phys 59:396–404

    MATH  MathSciNet  Google Scholar 

  13. Benamou JD, Despres B (1997) Domain decomposition method for the Helmholtz equation and related optimal control problems. J Comput Phys 136:62–88

    MathSciNet  Google Scholar 

  14. Benzi M, Haws JC, Tuma M (2000) Preconditioning highly indefinite and nonsymmetric matrices. SIAM J Sci Comput 22:1333–1353

    MATH  MathSciNet  Google Scholar 

  15. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    MATH  MathSciNet  Google Scholar 

  16. Berenger JP (1996) Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 127:363–379

    MATH  MathSciNet  Google Scholar 

  17. Berkhout AJ (1982) Seismic migration: imaging of acoustic energy by wave field extrapolation. Elsevier, Amsterdam

    Google Scholar 

  18. Bollöffer M (2004) A robust and efficient ILU that incorporates the growth of the inverse triangular factors. SIAM J Sci Comput 25:86–103

    Google Scholar 

  19. Bourgeois A, Bourget M, Lailly P, Poulet M, Ricarte P, Versteeg R (1991) Marmousi, model and data. In: Marmousi experience, pp 5–16

  20. Brackenridge K (1993) Multigrid and cyclic reduction applied to the Helmholtz equation. In: Melson ND, Manteuffel TA, McCormick SF (eds) Proc 6th Copper Mountain conf on multigrid methods, pp 31–41

  21. Brandt A (1977) Multi–level adaptive solutions to boundary–value problems. Math Comput 31:333–390

    MATH  MathSciNet  Google Scholar 

  22. Brandt A (2002) Multigrid techniques: 1984 guide with applications to fluid dynamics. Technical Report GMD-Studie 85, GMD Sankt Augustine, Germany

  23. Brandt A, Livshits I (1997) Wave-ray multigrid methods for standing wave equations. Electr Trans Numer Anal 6:162–181

    MATH  MathSciNet  Google Scholar 

  24. Brandt A, Ta’asan S (1986) Multigrid method for nearly singular and slightly indefinite problems. In: Proc EMG’85 Cologne, 1986, pp 99–121

  25. Brezinzky C, Zaglia MR (1995) Look-ahead in bi-cgstab and other product methods for linear systems. BIT 35:169–201

    MathSciNet  Google Scholar 

  26. Briggs WL (1988) A multigrid tutorial. SIAM, Philadelphia

    Google Scholar 

  27. Chow E, Saad Y (1997) ILUS: an incomplete LU factorization for matrices in sparse skyline format. Int J Numer Methods Fluids 25:739–749

    MATH  MathSciNet  Google Scholar 

  28. Clayton R, Engquist B (1977) Absorbing boundary conditions for acoustic and elastic wave equations. Bull Seis Soc Am 67(6):1529–1540

    Google Scholar 

  29. Colloni F, Ghanemi S, Joly P (1998) Domain decomposition methods for harmonic wave propagation: a general presentation. Technical Report, INRIA RR-3473

  30. Colton D, Kress R (1983) Integral equation methods in scattering theory. Willey, New York

    MATH  Google Scholar 

  31. Colton D, Kress R (1998) Inverse matrix and electromagnetic scattering theory. Springer, Berlin

    Google Scholar 

  32. D’Azevedo EF, Forsyth FA, Tang WP (1992) Towards a cost effective ILU preconditioner with high level fill. BIT 31:442–463

    MathSciNet  Google Scholar 

  33. Dendy J Jr (1983) Blackbox multigrid for nonsymmetric problems. Appl Math Comput 13:261–283

    MATH  MathSciNet  Google Scholar 

  34. Deraemaeker A, Babuska I, Bouillard P (1999) Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two, and three dimensions. Int J Numer Methods Eng 46:471–499

    MATH  Google Scholar 

  35. de Zeeuw PM (1990) Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J Comput Appl Math 33:1–27

    MATH  MathSciNet  Google Scholar 

  36. de Zeeuw PM (1996) Development of semi-coarsening techniques. Appl Numer Math 19:433–465

    MATH  MathSciNet  Google Scholar 

  37. Drespes B (1990) Domain decomposition method and Helmholtz problems. In: Cohen G, Halpern L, Joly P (eds) Mathematical and numerical aspects of wave propagation phenomena. SIAM, Philadelphia, pp 42–51

    Google Scholar 

  38. Elman HC (1986) A stability analysis of incomplete LU factorizations. Math Comput 47:191–217

    MATH  MathSciNet  Google Scholar 

  39. Elman HR, Ernst OG, O’Leary DP (2001) A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J Sci Comput 22:1291–1315

    MathSciNet  Google Scholar 

  40. Engquist B, Majda A (1977) Absorbing boundary conditions for the numerical simulation of waves. Math Comput 31:629–651

    MATH  MathSciNet  Google Scholar 

  41. Erlangga YA, Vuik C, Oosterlee CW (2004) On a class of preconditioners for solving the Helmholtz equation. Appl Numer Math 50:409–425

    MATH  MathSciNet  Google Scholar 

  42. Erlangga YA, Vuik C, Oosterlee CW (2005) On a robust iterative method for heterogeneous Helmholtz problems for geophysical applications. Int J Numer Anal Model 2:197–208

    MathSciNet  Google Scholar 

  43. Erlangga YA, Oosterlee CW, Vuik C (2006) A novel multigrid-based preconditioner for the heterogeneous Helmholtz equation. SIAM J Sci Comput 27:1471–1492

    MATH  MathSciNet  Google Scholar 

  44. Erlangga YA, Vuik C, Oosterlee CW (2006) Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation. Appl Numer Math 56:648–666

    MATH  MathSciNet  Google Scholar 

  45. Erlangga YA, Vuik C, Oosterlee CW (2006) A semicoarsening-based multigrid preconditioner for the 3D inhomogeneous Helmholtz equation. In: Wesseling P, Oosterlee CW, Hemker P (eds) Proceedings of the 8th European multigrid conference, September 27–30, 2005, Scheveningen, TU Delft, The Netherlands

  46. Fan K (1960) Note in M-matrices. Q J Math Oxford Ser 2 11:43–49

    MATH  Google Scholar 

  47. Farhat C, Macedo A, Lesoinne M (2000) A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numer Math 85:283–308

    MATH  MathSciNet  Google Scholar 

  48. Fish J, Qu Y (2000) Global-basis two-level method for indefinite systems. Int J Numer Methods Eng 49:439–460

    MATH  MathSciNet  Google Scholar 

  49. Fish J, Qu Y (2000) Global-basis two-level method for indefinite systems. Part I: convergence studies. Int J Numer Methods Eng 49:461–478

    MathSciNet  Google Scholar 

  50. Fletcher R (1975) Conjugate gradient methods for indefinite systems. In: Watson GA (ed) Proc the 1974 Dundee biennial conf on numerical analysis, pp 73–89

  51. Frank J, Vuik C (2001) On the construction of deflation-based preconditioners. SIAM J Sci Comput 23:442–462

    MATH  MathSciNet  Google Scholar 

  52. Freund RW (1992) Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J Sci Stat Comput 13(1):425–448

    MATH  MathSciNet  Google Scholar 

  53. Freund RW (1997) Preconditioning of symmetric but highly indefinite linear systems. In: Sydow A (ed) 15th IMACS world congress on scientific computation modelling and applied mathematics, vol 2. Numerical mathematics, pp 551–556

  54. Freund RW, Nachtigal NM (1991) QMR: A quasi minimum residual method for non-Hermitian linear systems. Numer Math 60:315–339

    MATH  MathSciNet  Google Scholar 

  55. Gander MJ, Nataf F (2000) AILU: a preconditioner based on the analytical factorization of the elliptical operator. Numer Linear Algebra Appl 7:543–567

    MathSciNet  Google Scholar 

  56. Gander MJ, Nataf F (2001) AILU for Helmholtz problems: a new preconditioner based on the analytic parabolic factorization. J Comput Acoust 9:1499–1509

    MathSciNet  Google Scholar 

  57. Gander MJ, Nataf F (2005) An incomplete LU preconditioner for problems in acoustics. J Comput Acoust 13:455–476

    MathSciNet  Google Scholar 

  58. George A, Liu JW (1981) Computer solution of large sparse positive definite systems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  59. Ghanemi S (1998) A domain decomposition method for Helmholtz scattering problems. In: Bjørstad, Espedal, Keyes, (eds) The ninth intl conf on domain decomposition methods, pp 105–112

  60. Ghosh-Roy DN, Couchman LS (2002) Inverse problems and inverse scattering of plane waves. Academic, London

    Google Scholar 

  61. Goldstein CI (1986) Multigrid preconditioners applied to the iterative methods of singularly perturbed elliptic boundary value and scattering problems. In: Innovative numerical methods in engineering. Springer, Berlin, pp 97–102

    Google Scholar 

  62. Gozani J, Nachshon A, Turkel E (1984) Conjugate gradient coupled with multigrid for an indefinite problem. In: Advances in comput methods for PDEs V, pp 425–427

  63. Greenbaum A (1997) Iterative methods for solving linear systems. SIAM, Philadelphia

    MATH  Google Scholar 

  64. Grote MJ, Huckel T (1997) Parallel preconditioning with sparse approximate inverses. SIAM J Sci Comput 18:838–853

    MATH  MathSciNet  Google Scholar 

  65. Gutknecht MH, Ressel KJ (2000) Look-ahead procedures for Lanczos-type product methods based on three-term recurrences. SIAM J Matrix Anal Appl 21:1051–1078

    MATH  MathSciNet  Google Scholar 

  66. Hackbusch W (1978) A fast iterative method for solving Helmholtz’s equation in a general region. In: Schumman U (ed) Fast elliptic solvers. Advance Publications, London, pp 112–124

    Google Scholar 

  67. Hackbusch W (2003) Multi-grid methods and applications. Springer, Berlin

    Google Scholar 

  68. Hadley GR (2006) A complex Jacobi iterative method for the indefinite Helmholtz equation. J Comput Phys 203:358–370

    Google Scholar 

  69. Harari I (2006) A survey of finite element methods for time-harmonic acoustics. Comput Methods Appl Mech Eng 195:1594–1607

    MATH  MathSciNet  Google Scholar 

  70. Harari I, Turkel E (1995) Accurate finite difference methods for time-harmonic wave propagation. J Comput Phys 119:252–270

    MATH  MathSciNet  Google Scholar 

  71. Heikkola E, Rossi T, Toivanen J (2000) A parallel fictitious domain decomposition method for the three-dimensional Helmholtz equation. Technical Report No B 9/2000, Dept Math Info Tech, Univ Jÿvaskÿla

  72. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49:409–435

    MATH  MathSciNet  Google Scholar 

  73. Ihlenburg F, Babuska I (1995) Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int J Numer Methods Eng 38:3745–3774

    MATH  MathSciNet  Google Scholar 

  74. Ihlenburg F, Babuska I (1995) Finite element solution of the Helmholtz equation with high wave number. Part I: the h-version of the FEM. Comput Math Appl 30(9):9–37

    MATH  MathSciNet  Google Scholar 

  75. Ihlenburg F, Babuska I (1997) Finite element solution of the Helmholtz equation with high wave number. Part II: the hp-version of the FEM. SIAM J Numer Anal 34:315–358

    MATH  MathSciNet  Google Scholar 

  76. Jo C-H, Shin C, Suh JH (1996) An optimal 9-point, finite difference, frequency space, 2-D scalar wave extrapolator. Geophysics 61(2):529–537

    Google Scholar 

  77. Kettler R (1982) Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. In: Hackbusch W, Trottenberg U (eds) Multigrid methods. Lecture notes in mathematics, vol 960, pp 502–534

  78. Kim S (1994) A parallezable iterative procedure for the Helmholtz equation. Appl Numer Math 14:435–449

    MATH  MathSciNet  Google Scholar 

  79. Kim S (1995) Parallel multidomain iterative algorithms for the Helmholtz wave equation. Appl Numer Math 17:411–429

    MATH  MathSciNet  Google Scholar 

  80. Kim S (1998) Domain decomposition iterative procedures for solving scalar waves in the frequency domain. Numer Math 79:231–259

    MATH  MathSciNet  Google Scholar 

  81. Kononov AV, Riyanti CD, de Leeuw SW, Vuik C, Oosterlee CW (2006) Numerical performance of parallel solution of heterogeneous 2d Helmholtz equation. In: Wesseling P, Oosterlee CW, Hemker P (eds) Proceedings of the 8th European multigrid conference, TU Delft

  82. Laird AL, Giles MB (2002) Preconditioned iterative solution of the 2D Helmholtz equation. Technical Report NA 02-12, Comp Lab, Oxford Univ

  83. Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Nat Bur Stand 45:255–282

    MathSciNet  Google Scholar 

  84. Lanczos C (1952) Solution of systems of linear equations by minimized iterations. J Res Nat Bur Stand 49:33–53

    MathSciNet  Google Scholar 

  85. Larsson E (1999) Domain decomposition method for the Helmholtz equation in a multilayer domain. SIAM J Sci Comput 20:1713–1731

    MATH  MathSciNet  Google Scholar 

  86. Lee B, Manteuffel TA, McCormick SF, Ruge J (2000) First-order system least-squares for the Helmholtz equation. SIAM J Sci Comput 21:1927–1949

    MATH  MathSciNet  Google Scholar 

  87. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103(1):16–42

    MATH  MathSciNet  Google Scholar 

  88. Lynch RE, Rice JR (1980) A high-order difference method for differential equations. Math Comput 34(150):333–372

    MATH  MathSciNet  Google Scholar 

  89. Made MMM (2001) Incomplete factorization-based preconditionings for solving the Helmholtz equation. Int J Numer Methods Eng 50:1077–1101

    MATH  Google Scholar 

  90. Manteuffel TA, Parter SV (1990) Preconditioning and boundary conditions. SIAM J Numer Anal 27(3):656–694

    MATH  MathSciNet  Google Scholar 

  91. Meijerink JA, van der Vorst HA (1977) An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math Comput 31(137):148–162

    MATH  Google Scholar 

  92. Meijerink JA, van der Vorst HA (1981) Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems. J Comput Phys 44:134–155

    MATH  MathSciNet  Google Scholar 

  93. Morgan RB (1995) A restarted GMRES method augmented with eigenvectors. SIAM J Matrix Anal Appl 16:1154–1171

    MATH  MathSciNet  Google Scholar 

  94. Nicolaides RA (1987) Deflation of conjugate gradients with applications to boundary value problems. SIAM J Numer Anal 24:355–365

    MATH  MathSciNet  Google Scholar 

  95. Oosterlee CW (1995) The convergence of parallel multiblock multigrid methods. Appl Numer Math 19:115–128

    MATH  MathSciNet  Google Scholar 

  96. Oosterlee CW, Washio T (1998) An evaluation of parallel multigrid as a solver and as a preconditioner for singularly perturbed problems. SIAM J Sci Comput 19:87–110

    MATH  MathSciNet  Google Scholar 

  97. Otto K, Larsson E (1999) Iterative solution of the Helmholtz equation by a second order method. SIAM J Matrix Anal Appl 21:209–229

    MATH  MathSciNet  Google Scholar 

  98. Plessix RE, Mulder WA (2004) Separation-of-variables as a preconditioner for an iterative Helmholtz solver. Appl Numer Math 44:385–400

    MathSciNet  Google Scholar 

  99. Pratt RG, Worthington MH (1990) Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method. Geophys Prosp 38:287–310

    Google Scholar 

  100. Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  101. Riyanti CD, Kononov AV, Vuik C, Oosterlee CW (2006) Parallel performance of an iterative solver for heterogeneous Helmholtz problems. In: SIAM conference on parallel processing for scientific computing, San Fransisco, CA

  102. Riyanti CD, Kononov A, Erlangga YA, Vuik C, Oosterlee CW, Plessix R-E, Mulder WA (2007) A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation. J Comput Phys 224(1):431–448

    MATH  MathSciNet  Google Scholar 

  103. Saad Y (1993) A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14:461–469

    MATH  MathSciNet  Google Scholar 

  104. Saad Y (1994) ILUT: a dual threshold incomplete LU factorization. Numer Linear Algebra Appl 1:387–402

    MATH  MathSciNet  Google Scholar 

  105. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    MATH  Google Scholar 

  106. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(12):856–869

    MATH  MathSciNet  Google Scholar 

  107. Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. J Future Gen Comput Syst 20:475–487

    Google Scholar 

  108. Schenk O, Gärtner K (2006) On fast factorization pivoting methods for symmetric indefinite systems. Electron Trans Numer Anal 23:158–179

    MATH  MathSciNet  Google Scholar 

  109. Singer I, Turkel E (1998) High-order finite difference methods for the Helmholtz equation. Comput Methods Appl Mech Eng 163:343–358

    MATH  MathSciNet  Google Scholar 

  110. Singer I, Turkel E (2006) Sixth order accurate finite difference scheme for the Helmholtz equations. J Comput Acoust 14(3):339–351

    MathSciNet  Google Scholar 

  111. Smith B, Bjorstad P, Gropp W (1996) Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  112. Sonneveld P (1989) CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J Sci Stat Comput 10:36–52

    MATH  MathSciNet  Google Scholar 

  113. Strikwerda JC (1989) Finite difference schemes and partial differential equations. Wadsworth & Brooks/Cole, Pacific Groove

    MATH  Google Scholar 

  114. Stüben K, Trottenberg U (1982) Multigrid methods: fundamental algorithms, model problem analysis and applications. In: Hackbusch W, Trottenberg U (eds) Lecture notes in math, vol 960, pp 1–176

  115. Susan-Resiga RF, Atassi HM (1998) A domain decomposition method for the exterior Helmholtz problem. J Comput Phys 147:388–401

    MATH  MathSciNet  Google Scholar 

  116. Szyld DB, Vogel JA (2001) A flexible quasi-minimal residual method with inexact preconditioning. SIAM J Sci Comput 23:363–380

    MATH  MathSciNet  Google Scholar 

  117. Tam CKW, Webb JC (1993) Dispersion-relation-preserving finite difference schemes for computational acoustics. J Comput Phys 107(2):262–281

    MATH  MathSciNet  Google Scholar 

  118. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266

    Google Scholar 

  119. Tezaur R, Macedo A, Farhat C (2001) Iterative solution of large-scale acoustic scattering problems with multiple right hand-sides by a domain decomposition method with Lagrange multipliers. Int J Numer Methods Eng 51:1175–1193

    MATH  MathSciNet  Google Scholar 

  120. Thole CA, Trottenberg U (1986) Basic smoothing procedures for the multigrid treatment of elliptic 3-d operators. Appl Math Comput 19:333–345

    MATH  MathSciNet  Google Scholar 

  121. Tosseli A, Widlund O (2005) Domain decomposition methods. Springer, Berlin

    Google Scholar 

  122. Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic, New York

    MATH  Google Scholar 

  123. Tsynkov S, Turkel E (2001) A Cartesian perfectly matched layer for the Helmholtz equation. In: Tourette L, Harpern L (eds) Absrobing boundaries and layers, domain decomposition methods applications to large scale computation. Springer, Berlin, pp 279–309

    Google Scholar 

  124. Turkel E (2001) Numerical difficulties solving time harmonic equations. In: Multiscale computational methods in chemistry and physics. IOS, Ohmsha, pp 319–337

    Google Scholar 

  125. Turkel E, Erlangga YA (2006) Preconditioning a finite element solver of the Helmholtz equation. In: Wesseling P, Oñate EO, Périaux J (eds), Proceedings ECCOMAS CFD 2006, TU Delft

  126. van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

    MATH  Google Scholar 

  127. van der Vorst HA (2003) Iterative Krylov methods for large linear systems. Cambridge University Press, New York

    MATH  Google Scholar 

  128. van der Vorst HA, Melissen JBM (1990) A Petrov-Galerkin type method for solving Ax=b, where A is symmetric complex systems. IEEE Trans Magn 26(2):706–708

    Google Scholar 

  129. van der Vorst HA, Vuik C (1993) The superlinear convergence behaviour of GMRES. J Comput Appl Math 48:327–341

    MATH  MathSciNet  Google Scholar 

  130. van der Vorst HA, Vuik C (1994) GMRESR: a family for nested GMRES methods. Numer Linear Algebra Appl 1(4):369–386

    MATH  MathSciNet  Google Scholar 

  131. van Gijzen M, Erlangga YA, Vuik C (2007) Spectral analysis of the shifted Laplace precondtioner. SIAM J Sci Comput 29(5):1942–1958

    MathSciNet  Google Scholar 

  132. Vandersteegen P, Bienstman P, Baets R (2006) Extensions of the complex Jacobi iteration to simulate photonic wavelength scale components. In: Wesseling P, Oñate E, Périaux J (eds) Proceedings ECCOMAS CFD 2006, TU Delft

  133. Vandersteegen P, Maes B, Bienstman P, Baets R (2006) Using the complex Jacobi method to simulate Kerr non-linear photonic components. Opt Quantum Electron 38:35–44

    Google Scholar 

  134. Vanek P, Mandel J, Brezina M (1996) Algebraic multigrid based on smoothed aggregation for second and fourth order problems. Computing 56:179–196

    MATH  MathSciNet  Google Scholar 

  135. Vanek PV, Mandel J, Brezina M (1998) Two-level algebraic multigrid for the Helmholtz problem. Contemp Math 218:349–356

    MathSciNet  Google Scholar 

  136. Vuik C, Erlangga YA, Oosterlee CW (2003) Shifted Laplace preconditioner for the Helmholtz equations. Technical Report 03-18, Dept Appl Math Anal, Delft Univ Tech, The Netherlands

  137. Waisman H, Fish J, Tuminaro RS, Shadid J (2004) The generalized global basis (GGB) methods. Int J Numer Methods Eng 61:1243–1269

    MATH  MathSciNet  Google Scholar 

  138. Washio T, Oosterlee CW (1998) Flexible multiple semicoarsening for three dimensional singularly perturbed problems. SIAM J Sci Comput 19:1646–1666

    MATH  MathSciNet  Google Scholar 

  139. Wesseling P (1992) An introduction to multigrid methods. Willey, London

    MATH  Google Scholar 

  140. Wienands R, Joppich W (2004) Practical Fourier analysis for multigrid methods. Chapman & Hall/CRC, London

    Google Scholar 

  141. Wienands R, Oosterlee CW (2001) On three-grid Fourier analysis of multigrid. SIAM J Sci Comput 23:651–671

    MATH  MathSciNet  Google Scholar 

  142. Zhou L, Walker HF (1994) Residual smoothing techniques for iterative methods. SIAM J Sci Comput 15(2):297–312

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogi A. Erlangga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlangga, Y.A. Advances in Iterative Methods and Preconditioners for the Helmholtz Equation. Arch Computat Methods Eng 15, 37–66 (2008). https://doi.org/10.1007/s11831-007-9013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-007-9013-7

Keywords

Navigation