Abstract
In this paper we survey the development of fast iterative solvers aimed at solving 2D/3D Helmholtz problems. In the first half of the paper, a survey on some recently developed methods is given. The second half of the paper focuses on the development of the shifted Laplacian preconditioner used to accelerate the convergence of Krylov subspace methods applied to the Helmholtz equation. Numerical examples are given for some difficult problems, which had not been solved iteratively before.
Similar content being viewed by others
References
Abarbanel S, Gottlieb D (1997) A mathematical analysis of the PML method. J Comput Phys 134:357–363
Abarbanel S, Gottlieb D (1998) On the construction and analysis of absorbing layers in CEM. Appl Numer Math 27:331–340
Alcouffe RE, Brandt A, Dendy JE Jr, Painter JW (1981) The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM J Sci Comput 2:430–454
Arnoldi WE (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q Appl Math 9:17–29
Babuska I, Sauter S (1997) Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?. SIAM J Numer Anal 27:323–352
Babuska I, Ihlenburg F, Strouboulis T, Gangaraj SK (1997) Posteriori error estimation for finite element solutions of Helmholtz’s equation. Part I: the quality of local indicators and estimators. Int J Numer Methods Eng 40:3443–3462
Babuska I, Ihlenburg F, Strouboulis T, Gangaraj SK (1997) Posteriori error estimation for finite element solutions of Helmholtz’s equation. Part II: estimation of the pollution error. Int J Numer Methods Eng 40:3883–3900
Bamberger A, Joly P, Roberts JE (1990) Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem. SIAM J Numer Anal 27:323–352
Bayliss A, Gunzburger M, Turkel E (1982) Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J Appl Math 42:430–451
Bayliss A, Goldstein CI, Turkel E (1983) An iterative method for Helmholtz equation. J Comput Phys 49:443–457
Bayliss A, Goldstein CI, Turkel E (1985) The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comput Math Appl 11:655–665
Bayliss A, Goldstein CI, Turkel E (1985) On accuracy conditions for the numerical computation of waves. J Comput Phys 59:396–404
Benamou JD, Despres B (1997) Domain decomposition method for the Helmholtz equation and related optimal control problems. J Comput Phys 136:62–88
Benzi M, Haws JC, Tuma M (2000) Preconditioning highly indefinite and nonsymmetric matrices. SIAM J Sci Comput 22:1333–1353
Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200
Berenger JP (1996) Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 127:363–379
Berkhout AJ (1982) Seismic migration: imaging of acoustic energy by wave field extrapolation. Elsevier, Amsterdam
Bollöffer M (2004) A robust and efficient ILU that incorporates the growth of the inverse triangular factors. SIAM J Sci Comput 25:86–103
Bourgeois A, Bourget M, Lailly P, Poulet M, Ricarte P, Versteeg R (1991) Marmousi, model and data. In: Marmousi experience, pp 5–16
Brackenridge K (1993) Multigrid and cyclic reduction applied to the Helmholtz equation. In: Melson ND, Manteuffel TA, McCormick SF (eds) Proc 6th Copper Mountain conf on multigrid methods, pp 31–41
Brandt A (1977) Multi–level adaptive solutions to boundary–value problems. Math Comput 31:333–390
Brandt A (2002) Multigrid techniques: 1984 guide with applications to fluid dynamics. Technical Report GMD-Studie 85, GMD Sankt Augustine, Germany
Brandt A, Livshits I (1997) Wave-ray multigrid methods for standing wave equations. Electr Trans Numer Anal 6:162–181
Brandt A, Ta’asan S (1986) Multigrid method for nearly singular and slightly indefinite problems. In: Proc EMG’85 Cologne, 1986, pp 99–121
Brezinzky C, Zaglia MR (1995) Look-ahead in bi-cgstab and other product methods for linear systems. BIT 35:169–201
Briggs WL (1988) A multigrid tutorial. SIAM, Philadelphia
Chow E, Saad Y (1997) ILUS: an incomplete LU factorization for matrices in sparse skyline format. Int J Numer Methods Fluids 25:739–749
Clayton R, Engquist B (1977) Absorbing boundary conditions for acoustic and elastic wave equations. Bull Seis Soc Am 67(6):1529–1540
Colloni F, Ghanemi S, Joly P (1998) Domain decomposition methods for harmonic wave propagation: a general presentation. Technical Report, INRIA RR-3473
Colton D, Kress R (1983) Integral equation methods in scattering theory. Willey, New York
Colton D, Kress R (1998) Inverse matrix and electromagnetic scattering theory. Springer, Berlin
D’Azevedo EF, Forsyth FA, Tang WP (1992) Towards a cost effective ILU preconditioner with high level fill. BIT 31:442–463
Dendy J Jr (1983) Blackbox multigrid for nonsymmetric problems. Appl Math Comput 13:261–283
Deraemaeker A, Babuska I, Bouillard P (1999) Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two, and three dimensions. Int J Numer Methods Eng 46:471–499
de Zeeuw PM (1990) Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J Comput Appl Math 33:1–27
de Zeeuw PM (1996) Development of semi-coarsening techniques. Appl Numer Math 19:433–465
Drespes B (1990) Domain decomposition method and Helmholtz problems. In: Cohen G, Halpern L, Joly P (eds) Mathematical and numerical aspects of wave propagation phenomena. SIAM, Philadelphia, pp 42–51
Elman HC (1986) A stability analysis of incomplete LU factorizations. Math Comput 47:191–217
Elman HR, Ernst OG, O’Leary DP (2001) A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J Sci Comput 22:1291–1315
Engquist B, Majda A (1977) Absorbing boundary conditions for the numerical simulation of waves. Math Comput 31:629–651
Erlangga YA, Vuik C, Oosterlee CW (2004) On a class of preconditioners for solving the Helmholtz equation. Appl Numer Math 50:409–425
Erlangga YA, Vuik C, Oosterlee CW (2005) On a robust iterative method for heterogeneous Helmholtz problems for geophysical applications. Int J Numer Anal Model 2:197–208
Erlangga YA, Oosterlee CW, Vuik C (2006) A novel multigrid-based preconditioner for the heterogeneous Helmholtz equation. SIAM J Sci Comput 27:1471–1492
Erlangga YA, Vuik C, Oosterlee CW (2006) Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation. Appl Numer Math 56:648–666
Erlangga YA, Vuik C, Oosterlee CW (2006) A semicoarsening-based multigrid preconditioner for the 3D inhomogeneous Helmholtz equation. In: Wesseling P, Oosterlee CW, Hemker P (eds) Proceedings of the 8th European multigrid conference, September 27–30, 2005, Scheveningen, TU Delft, The Netherlands
Fan K (1960) Note in M-matrices. Q J Math Oxford Ser 2 11:43–49
Farhat C, Macedo A, Lesoinne M (2000) A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numer Math 85:283–308
Fish J, Qu Y (2000) Global-basis two-level method for indefinite systems. Int J Numer Methods Eng 49:439–460
Fish J, Qu Y (2000) Global-basis two-level method for indefinite systems. Part I: convergence studies. Int J Numer Methods Eng 49:461–478
Fletcher R (1975) Conjugate gradient methods for indefinite systems. In: Watson GA (ed) Proc the 1974 Dundee biennial conf on numerical analysis, pp 73–89
Frank J, Vuik C (2001) On the construction of deflation-based preconditioners. SIAM J Sci Comput 23:442–462
Freund RW (1992) Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J Sci Stat Comput 13(1):425–448
Freund RW (1997) Preconditioning of symmetric but highly indefinite linear systems. In: Sydow A (ed) 15th IMACS world congress on scientific computation modelling and applied mathematics, vol 2. Numerical mathematics, pp 551–556
Freund RW, Nachtigal NM (1991) QMR: A quasi minimum residual method for non-Hermitian linear systems. Numer Math 60:315–339
Gander MJ, Nataf F (2000) AILU: a preconditioner based on the analytical factorization of the elliptical operator. Numer Linear Algebra Appl 7:543–567
Gander MJ, Nataf F (2001) AILU for Helmholtz problems: a new preconditioner based on the analytic parabolic factorization. J Comput Acoust 9:1499–1509
Gander MJ, Nataf F (2005) An incomplete LU preconditioner for problems in acoustics. J Comput Acoust 13:455–476
George A, Liu JW (1981) Computer solution of large sparse positive definite systems. Prentice-Hall, Englewood Cliffs
Ghanemi S (1998) A domain decomposition method for Helmholtz scattering problems. In: Bjørstad, Espedal, Keyes, (eds) The ninth intl conf on domain decomposition methods, pp 105–112
Ghosh-Roy DN, Couchman LS (2002) Inverse problems and inverse scattering of plane waves. Academic, London
Goldstein CI (1986) Multigrid preconditioners applied to the iterative methods of singularly perturbed elliptic boundary value and scattering problems. In: Innovative numerical methods in engineering. Springer, Berlin, pp 97–102
Gozani J, Nachshon A, Turkel E (1984) Conjugate gradient coupled with multigrid for an indefinite problem. In: Advances in comput methods for PDEs V, pp 425–427
Greenbaum A (1997) Iterative methods for solving linear systems. SIAM, Philadelphia
Grote MJ, Huckel T (1997) Parallel preconditioning with sparse approximate inverses. SIAM J Sci Comput 18:838–853
Gutknecht MH, Ressel KJ (2000) Look-ahead procedures for Lanczos-type product methods based on three-term recurrences. SIAM J Matrix Anal Appl 21:1051–1078
Hackbusch W (1978) A fast iterative method for solving Helmholtz’s equation in a general region. In: Schumman U (ed) Fast elliptic solvers. Advance Publications, London, pp 112–124
Hackbusch W (2003) Multi-grid methods and applications. Springer, Berlin
Hadley GR (2006) A complex Jacobi iterative method for the indefinite Helmholtz equation. J Comput Phys 203:358–370
Harari I (2006) A survey of finite element methods for time-harmonic acoustics. Comput Methods Appl Mech Eng 195:1594–1607
Harari I, Turkel E (1995) Accurate finite difference methods for time-harmonic wave propagation. J Comput Phys 119:252–270
Heikkola E, Rossi T, Toivanen J (2000) A parallel fictitious domain decomposition method for the three-dimensional Helmholtz equation. Technical Report No B 9/2000, Dept Math Info Tech, Univ Jÿvaskÿla
Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49:409–435
Ihlenburg F, Babuska I (1995) Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int J Numer Methods Eng 38:3745–3774
Ihlenburg F, Babuska I (1995) Finite element solution of the Helmholtz equation with high wave number. Part I: the h-version of the FEM. Comput Math Appl 30(9):9–37
Ihlenburg F, Babuska I (1997) Finite element solution of the Helmholtz equation with high wave number. Part II: the hp-version of the FEM. SIAM J Numer Anal 34:315–358
Jo C-H, Shin C, Suh JH (1996) An optimal 9-point, finite difference, frequency space, 2-D scalar wave extrapolator. Geophysics 61(2):529–537
Kettler R (1982) Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. In: Hackbusch W, Trottenberg U (eds) Multigrid methods. Lecture notes in mathematics, vol 960, pp 502–534
Kim S (1994) A parallezable iterative procedure for the Helmholtz equation. Appl Numer Math 14:435–449
Kim S (1995) Parallel multidomain iterative algorithms for the Helmholtz wave equation. Appl Numer Math 17:411–429
Kim S (1998) Domain decomposition iterative procedures for solving scalar waves in the frequency domain. Numer Math 79:231–259
Kononov AV, Riyanti CD, de Leeuw SW, Vuik C, Oosterlee CW (2006) Numerical performance of parallel solution of heterogeneous 2d Helmholtz equation. In: Wesseling P, Oosterlee CW, Hemker P (eds) Proceedings of the 8th European multigrid conference, TU Delft
Laird AL, Giles MB (2002) Preconditioned iterative solution of the 2D Helmholtz equation. Technical Report NA 02-12, Comp Lab, Oxford Univ
Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Nat Bur Stand 45:255–282
Lanczos C (1952) Solution of systems of linear equations by minimized iterations. J Res Nat Bur Stand 49:33–53
Larsson E (1999) Domain decomposition method for the Helmholtz equation in a multilayer domain. SIAM J Sci Comput 20:1713–1731
Lee B, Manteuffel TA, McCormick SF, Ruge J (2000) First-order system least-squares for the Helmholtz equation. SIAM J Sci Comput 21:1927–1949
Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103(1):16–42
Lynch RE, Rice JR (1980) A high-order difference method for differential equations. Math Comput 34(150):333–372
Made MMM (2001) Incomplete factorization-based preconditionings for solving the Helmholtz equation. Int J Numer Methods Eng 50:1077–1101
Manteuffel TA, Parter SV (1990) Preconditioning and boundary conditions. SIAM J Numer Anal 27(3):656–694
Meijerink JA, van der Vorst HA (1977) An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math Comput 31(137):148–162
Meijerink JA, van der Vorst HA (1981) Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems. J Comput Phys 44:134–155
Morgan RB (1995) A restarted GMRES method augmented with eigenvectors. SIAM J Matrix Anal Appl 16:1154–1171
Nicolaides RA (1987) Deflation of conjugate gradients with applications to boundary value problems. SIAM J Numer Anal 24:355–365
Oosterlee CW (1995) The convergence of parallel multiblock multigrid methods. Appl Numer Math 19:115–128
Oosterlee CW, Washio T (1998) An evaluation of parallel multigrid as a solver and as a preconditioner for singularly perturbed problems. SIAM J Sci Comput 19:87–110
Otto K, Larsson E (1999) Iterative solution of the Helmholtz equation by a second order method. SIAM J Matrix Anal Appl 21:209–229
Plessix RE, Mulder WA (2004) Separation-of-variables as a preconditioner for an iterative Helmholtz solver. Appl Numer Math 44:385–400
Pratt RG, Worthington MH (1990) Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method. Geophys Prosp 38:287–310
Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford Science Publications, Oxford
Riyanti CD, Kononov AV, Vuik C, Oosterlee CW (2006) Parallel performance of an iterative solver for heterogeneous Helmholtz problems. In: SIAM conference on parallel processing for scientific computing, San Fransisco, CA
Riyanti CD, Kononov A, Erlangga YA, Vuik C, Oosterlee CW, Plessix R-E, Mulder WA (2007) A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation. J Comput Phys 224(1):431–448
Saad Y (1993) A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14:461–469
Saad Y (1994) ILUT: a dual threshold incomplete LU factorization. Numer Linear Algebra Appl 1:387–402
Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia
Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(12):856–869
Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. J Future Gen Comput Syst 20:475–487
Schenk O, Gärtner K (2006) On fast factorization pivoting methods for symmetric indefinite systems. Electron Trans Numer Anal 23:158–179
Singer I, Turkel E (1998) High-order finite difference methods for the Helmholtz equation. Comput Methods Appl Mech Eng 163:343–358
Singer I, Turkel E (2006) Sixth order accurate finite difference scheme for the Helmholtz equations. J Comput Acoust 14(3):339–351
Smith B, Bjorstad P, Gropp W (1996) Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge
Sonneveld P (1989) CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J Sci Stat Comput 10:36–52
Strikwerda JC (1989) Finite difference schemes and partial differential equations. Wadsworth & Brooks/Cole, Pacific Groove
Stüben K, Trottenberg U (1982) Multigrid methods: fundamental algorithms, model problem analysis and applications. In: Hackbusch W, Trottenberg U (eds) Lecture notes in math, vol 960, pp 1–176
Susan-Resiga RF, Atassi HM (1998) A domain decomposition method for the exterior Helmholtz problem. J Comput Phys 147:388–401
Szyld DB, Vogel JA (2001) A flexible quasi-minimal residual method with inexact preconditioning. SIAM J Sci Comput 23:363–380
Tam CKW, Webb JC (1993) Dispersion-relation-preserving finite difference schemes for computational acoustics. J Comput Phys 107(2):262–281
Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266
Tezaur R, Macedo A, Farhat C (2001) Iterative solution of large-scale acoustic scattering problems with multiple right hand-sides by a domain decomposition method with Lagrange multipliers. Int J Numer Methods Eng 51:1175–1193
Thole CA, Trottenberg U (1986) Basic smoothing procedures for the multigrid treatment of elliptic 3-d operators. Appl Math Comput 19:333–345
Tosseli A, Widlund O (2005) Domain decomposition methods. Springer, Berlin
Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic, New York
Tsynkov S, Turkel E (2001) A Cartesian perfectly matched layer for the Helmholtz equation. In: Tourette L, Harpern L (eds) Absrobing boundaries and layers, domain decomposition methods applications to large scale computation. Springer, Berlin, pp 279–309
Turkel E (2001) Numerical difficulties solving time harmonic equations. In: Multiscale computational methods in chemistry and physics. IOS, Ohmsha, pp 319–337
Turkel E, Erlangga YA (2006) Preconditioning a finite element solver of the Helmholtz equation. In: Wesseling P, Oñate EO, Périaux J (eds), Proceedings ECCOMAS CFD 2006, TU Delft
van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644
van der Vorst HA (2003) Iterative Krylov methods for large linear systems. Cambridge University Press, New York
van der Vorst HA, Melissen JBM (1990) A Petrov-Galerkin type method for solving Ax=b, where A is symmetric complex systems. IEEE Trans Magn 26(2):706–708
van der Vorst HA, Vuik C (1993) The superlinear convergence behaviour of GMRES. J Comput Appl Math 48:327–341
van der Vorst HA, Vuik C (1994) GMRESR: a family for nested GMRES methods. Numer Linear Algebra Appl 1(4):369–386
van Gijzen M, Erlangga YA, Vuik C (2007) Spectral analysis of the shifted Laplace precondtioner. SIAM J Sci Comput 29(5):1942–1958
Vandersteegen P, Bienstman P, Baets R (2006) Extensions of the complex Jacobi iteration to simulate photonic wavelength scale components. In: Wesseling P, Oñate E, Périaux J (eds) Proceedings ECCOMAS CFD 2006, TU Delft
Vandersteegen P, Maes B, Bienstman P, Baets R (2006) Using the complex Jacobi method to simulate Kerr non-linear photonic components. Opt Quantum Electron 38:35–44
Vanek P, Mandel J, Brezina M (1996) Algebraic multigrid based on smoothed aggregation for second and fourth order problems. Computing 56:179–196
Vanek PV, Mandel J, Brezina M (1998) Two-level algebraic multigrid for the Helmholtz problem. Contemp Math 218:349–356
Vuik C, Erlangga YA, Oosterlee CW (2003) Shifted Laplace preconditioner for the Helmholtz equations. Technical Report 03-18, Dept Appl Math Anal, Delft Univ Tech, The Netherlands
Waisman H, Fish J, Tuminaro RS, Shadid J (2004) The generalized global basis (GGB) methods. Int J Numer Methods Eng 61:1243–1269
Washio T, Oosterlee CW (1998) Flexible multiple semicoarsening for three dimensional singularly perturbed problems. SIAM J Sci Comput 19:1646–1666
Wesseling P (1992) An introduction to multigrid methods. Willey, London
Wienands R, Joppich W (2004) Practical Fourier analysis for multigrid methods. Chapman & Hall/CRC, London
Wienands R, Oosterlee CW (2001) On three-grid Fourier analysis of multigrid. SIAM J Sci Comput 23:651–671
Zhou L, Walker HF (1994) Residual smoothing techniques for iterative methods. SIAM J Sci Comput 15(2):297–312
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Erlangga, Y.A. Advances in Iterative Methods and Preconditioners for the Helmholtz Equation. Arch Computat Methods Eng 15, 37–66 (2008). https://doi.org/10.1007/s11831-007-9013-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11831-007-9013-7