Abstract
In Grote and Sim (Efficient PML for the wave equation. Preprint, arXiv:1001.0319 [math:NA], 2010; in: Proceedings of the ninth international conference on numerical aspects of wave propagation (WAVES 2009, held in Pau, France, 2009), pp 370–371), a PML formulation was proposed for the wave equation in its standard second-order form. Here, energy decay and \(L^2\) stability bounds in two and three space dimensions are rigorously proved both for continuous and discrete formulations with constant damping coefficients. Numerical results validate the theory.
Similar content being viewed by others
References
Abarbanel, S., Gottlieb, D.: A mathematical analysis of the PML method. J. Comput. Phys. 134, 357–363 (1997)
Abarbanel, S., Gottlieb, D., Hestahaven, J.S.: Well-posed perfectly matched layers for advective acoustics. J. Comput. Phys. 154, 266–283 (1999)
Appelö, D., Hagstrom, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J. Appl. Math. 67(1), 1–23 (2006)
Appelö, D., Kreiss, G.: Application of a perfectly matched layer to the nonlinear wave equation. Wave Motion 44, 531–548 (2007)
Barucq, H., Diaz, J., Tlemcani, M.: New absorbing layers conditions for short water waves. J. Comput. Phys. 229(1), 58–72 (2010). https://doi.org/10.1016/j.jcp.2009.08.033
Bécache, E., Fauqueux, S., Joly, P.: Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 399–433 (2003)
Bécache, E., Joly, P.: On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. M2AN Math. Model. Numer. Anal. 36(1), 87–119 (2002)
Bécache, E., Joly, P., Kachanovska, M.: Stable perfectly matched layers for a cold plasma in a strong background magnetic field. J. Comput. Phys. 341, 76–101 (2017). https://doi.org/10.1016/j.jcp.2017.03.051
Bécache, É., Joly, P., Kachanovska, M., Vinoles, V.: Perfectly matched layers in negative index metamaterials and plasmas. CANUM 2014–42e Congrès National d’Analyse Numérique, ESAIM Proc. Surveys, vol. 50, pp. 113–132. EDP Sci, Les Ulis (2015)
Bécache, E., Joly, P., Vinoles, V.: On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials. Math. Comput. 87(314), 2775–2810 (2018)
Bécache, E., Kachanovska, M.: Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability. ESAIM Math. Model. Numer. Anal. 51(6), 2399–2434 (2017)
Bécache, E., Petropoulos, P.G., Gedney, S.D.: On the long-time behavior of unsplit perfectly matched layers. IEEE Trans. Antennas Propag. 52(5), 1335–1342 (2004)
Bérenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)
Bérenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127(2), 363–379 (1996)
Chabassier, J., Imperiale, S.: Space/time convergence analysis of a class of conservative schemes for linear wave equations. C. R. Math. Acad. Sci. Paris 355(3), 282–289 (2017). https://doi.org/10.1016/j.crma.2016.12.009
Chen, Z.: Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer. Anal. Model. 6(1), 124–146 (2009)
Chew, W.C., Weedon, W.H.: A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604 (1994)
Collino, F., Monk, P.B.: Optimizing the perfectly matched layer. Comput. Methods Appl. Mech. Eng. 164(1–2), 157–171 (1998). https://doi.org/10.1016/S0045-7825(98)00052-8. Exterior problems of wave propagation (Boulder, CO, 1997; San Francisco, CA, 1997)
Collino, F., Tsogka, C.: Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)
Demaldent, E., Imperiale, S.: Perfectly matched transmission problem with absorbing layers: application to anisotropic acoustics in convex polygonal domains. Int. J. Numer. Methods Eng. 96(11), 689–711 (2013). https://doi.org/10.1002/nme.4572
Diaz, J., Joly, P.: A time domain analysis of PML models in acoustics. Comput. Methods Appl. Mech. Eng. 195(29–32), 3820–3853 (2006)
Duru, K.: The role of numerical boundary procedures in the stability of perfectly matched layers. SIAM J. Sci. Comput. 38(2), A1171–A1194 (2016). https://doi.org/10.1137/140976443
Duru, K., Kreiss, G.: Boundary waves and stability of the perfectly matched layer for the two space dimensional elastic wave equation in second order form. SIAM Numer. Anal. 52, 2883–2904 (2014)
Ervedoza, S., Zuazua, E.: Perfectly matched layers in 1-d: energy decay for continuous and semi-discrete waves. Numer. Math. 109(4), 597–634 (2008)
Grote, M., Sim, I.: Efficient PML for the wave equation. Preprint. arXiv:1001.0319 [math:NA] (2010)
Grote, M.J., Sim, I.: Perfectly matched layer for the second-order wave equation. In: Proceedings of the Ninth International Conference on Numerical Aspects of Wave Propagation (WAVES 2009, held in Pau, France, 2009), pp. 370–371
Hagstrom, T., Appelö, D.: Automatic symmetrization and energy estimates using local operators for partial differential equations. Commun. Partial Differ. Equ. 32(7–9), 1129–1145 (2007)
Hu, F.Q.: On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys. 129, 201–219 (1996)
Hu, F.Q.: A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys. 173(2), 455–480 (2001). https://doi.org/10.1006/jcph.2001.6887
Joly, P.: An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57, 5–48 (2012)
Kachanovska, M.: Stable perfectly matched layers for a class of anisotropic dispersive models. Part II: energy estimates (2017). https://hal.inria.fr/hal-01419682. Https://hal.inria.fr/hal-01419682
Kaltenbacher, B., Kaltenbacher, M., Sim, I.: A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. J. Comput. Phys. 235, 407–422 (2013). https://doi.org/10.1016/j.jcp.2012.10.016
Komatitsch, D., Tromp, J.: A perfectly matched layer absorbing boundary conditionfor the second-order seismic wave equation. Geophys. J. Int. 154, 146–153 (2003)
Nataf, F.: A new approach to perfectly matched layers for the linearized Euler system. J. Comput. Phys. 214(2), 757–772 (2006). https://doi.org/10.1016/j.jcp.2005.10.014
Sjögreen, B., Petersson, N.A.: Perfectly matched layers for Maxwell’s equations in second order formulation. J. Comput. Phys. 209, 19–46 (2005)
Zhao, L., Cangellaris, A.C.: Gt-pml: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. Microw. Theory Tech. 44(12), 2555–2563 (1996)
Acknowledgements
The fourth author acknowledges the partial support of a public Grant as part of the Investissement d’avenir Project, Reference ANR-11-LABX-0056-LMH, LabEx LMH.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Baffet, D.H., Grote, M.J., Imperiale, S. et al. Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation. J Sci Comput 81, 2237–2270 (2019). https://doi.org/10.1007/s10915-019-01089-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01089-9