Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Maximum consistency method for data fitting under interval uncertainty

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The work is devoted to application of global optimization in data fitting problem under interval uncertainty. Parameters of the linear function that best fits intervally defined data are taken as the maximum point for a special (“recognizing”) functional which is shown to characterize consistency between the data and parameters. The new data fitting technique is therefore called “maximum consistency method”. We investigate properties of the recognizing functional and present interpretation of the parameter estimates produced by the maximum consistency method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  2. Beeck, H.: Über die Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing 10, 231–244 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  4. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmerman, M.: Linear Optimization Problems with Inexact Data. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation. Robust Control and Robotics. Springer, London (2001)

    MATH  Google Scholar 

  6. Kantorovich, L. V.: On some new approaches to numerical methods and processing observation data. Sib. Math. J. 3(5), 701–709 (1962) (in Russian). Electronic version is accessible at http://www.nsc.ru/interval/Introduction/Kantorovich62.pdf

  7. Kearfott, R.B., Nakao, M., Neumaier, A., Rump, S., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. Comput. Technol. 15(1), 7–13 (2010)

    MATH  Google Scholar 

  8. Kurzhanski, A.B., Vályi, I.: Ellipsoidal Calculus for Estimation and Control. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  9. Lakeyev, A.V., Noskov, S.I.: A description of the set of solutions of a linear equation with intervally defined operator and right-hand side. Russian Acad. Sci. Dokl. Math. 47(3), 518–523 (1993)

    MathSciNet  Google Scholar 

  10. Milanese, M., Norton, J., Piet-Lahanier, H., Walter, E. (eds.): Bounding Approaches to System Identification. Plenum Press, New York (1996)

    MATH  Google Scholar 

  11. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  12. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  13. Nurminski, E.A.: Separating plane algorithms for convex optimization. Math. Progr. 76(3), 373–391 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rao, C.R., Toutenburg, H., Shalabh, Heumann, C.: Linear Models and Generalizations. Least Squares and Alternatives. Springer, New York (2008)

    MATH  Google Scholar 

  15. Remez, E.Ya.: General computational methods of Chebyshev approximation: The problems with linear real parameters. Oak Ridge, U.S. Atomic Energy Commission. Translation 4491 (1962)

  16. Schweppe, F.C.: Recursive state estimation: unknown but bounded errors and system inputs. IEEE Trans. Autom. Control 13(1), 22–28 (1968)

    Article  Google Scholar 

  17. Shary, S.P.: Solvability of interval linear equations and data analysis under uncertainty. Autom. Remote Control 73(2), 310–322 (2012). doi:10.1134/S0005117912020099

    Article  MathSciNet  MATH  Google Scholar 

  18. Shary, S.P.: Finite-dimensional interval analysis. Institute of Computational Technologies SB RAS, Novosibirsk (2013). Electronic book accessible at http://www.nsc.ru/interval/Library/InteBooks

  19. Shary, S.P., Sharaya, I.A.: Recognition of solvability of interval equations and its application to data analysis. Comput. Technol. 18(3), 80–109 (2013) (in Russian)

  20. Shary, S.P., Sharaya, I.A.: On solvability recognition for interval linear systems of equations. Optim. Lett. (2015). Prepublished on May 6, 2015. doi: 10.1007/s11590-015-0891-6

  21. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer, Boston (1998)

    Book  MATH  Google Scholar 

  22. Shor, N.Z., Stetsyuk, P.I.: Modified \(r\)-algorithm to find the global minimum of polynomial functions. Cybern. Syst. Anal. 33(4), 482–497 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strekalovsky, A.S.: On the minimization of the difference of convex functions on a feasible set. Comput. Math. Math. Physics 43(3), 380–390 (2003)

    MathSciNet  Google Scholar 

  24. Vorontsova, E.A.: A projective separating plane method with additional clipping for non-smooth optimization. WSEAS Trans. Math. 13, 115–121 (2014)

    Google Scholar 

  25. Zhilin, S.I.: On fitting empirical data under interval error. Reliab. Comput. 11(5), 433–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Shary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shary, S.P. Maximum consistency method for data fitting under interval uncertainty. J Glob Optim 66, 111–126 (2016). https://doi.org/10.1007/s10898-015-0340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0340-1

Keywords

Mathematics Subject Classification

Navigation