Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Maximum compatibility method for data fitting under interval uncertainty

  • Control in Stochastic Systems and under Uncertainty Conditions
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

For the linear regression model, the data-fitting problem under the interval uncertainty of the data is studied. As an estimate of the linear function parameters, it is proposed to take their values that deliver the maximum for the so-called recognizing functional of the parameter set compatible with the data (the maximum compatibility method). The properties of the recognizing functional, its interpretation, and the properties of the estimates obtained using the maximum compatibility method are investigated. The relationships to other data analysis methods are discussed, and a practical electrochemistry problem is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966), Vols. 1, 2.

    MATH  Google Scholar 

  2. Yu. V. Linnik, Method of Least Squares and Principles of the Theory of Observations (GIFML, Moscow, 1962; Univ. Liverpool, Liverpool, 1961).

    Google Scholar 

  3. L. V. Kantorovich, “On some new approaches to computational methods and observations processing,” Sib. Mat. Zh. 3, 701–709 (1962).

    Google Scholar 

  4. M. L. Lidov, “Minimax methods for estimation,” KIAM Preprint No. 71 (Keldysh Inst. Appl. Math., Moscow, 2010).

    Google Scholar 

  5. A. P. Voshchinin, A. F. Bochkov, and G. R. Sotirov, “Method of data analysis with interval non-statistical error,” Zavod. Lab. 56 (7), 76–81 (1990).

    Google Scholar 

  6. V. M. Kuntsevich, “Control and identification under uncertainty conditions: results and unsolved problems,” Radioelektron. Komp’yut. Sist., No. 5 (24), 34–46 (2007).

    Google Scholar 

  7. N. M. Oskorbin, A. V. Maksimov, and S. I. Zhilin, “Construction and analysis of empirical dependencies by the method of uncertaity center,” Izv. Altaisk. Univ., No. 1, 37–40 (1998).

    Google Scholar 

  8. S. I. Spivak, V. I. Timoshenko, and M. G. Slin’ko, “Using of Chebyshev alignment method in construction of kinetic model of complex chemical reaction,” Dokl. Akad. Nauk SSSR 192, 580–582 (1970).

    Google Scholar 

  9. S. I. Spivak, O. G. Kantor, D. S. Yunusova, S. I. Kuznetsov, and S. V. Kolesov, “Error estimates and measuring significance for linear models,” Inform. Primen. 9, 87–97 (2015).

    Google Scholar 

  10. V. A. Sukhanov, Study of Empirical Dependencies: Nonstatistical Approach (Altaisk. Univ., Barnaul, 2007) [in Russian].

    Google Scholar 

  11. S. I. Zhilin, “On fitting empirical data under interval error,” Reliable Comput. 11, 433–442 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. T. Polyak and S. A. Nazin, “Parameter estimation in linear multidimensional systems with interval uncertaity,” Probl. Upravl. Inform., Nos. 1–2, 103–115 (2006).

    Google Scholar 

  13. A. L. Pomerantsev and O. Ye. Rodionova, “Construction of a multivariate calibration by the simple interval calculation method,” J. Anal. Chem. 61, 952–966 (2006).

    Article  Google Scholar 

  14. S. I. Kumkov, “Working of experimental data of ionic condaction molten electrolyte by methods of interwal analysis,” Rasplavy, No. 3, 79–89 (2010).

    Google Scholar 

  15. A. A. Podruzhko and A. S. Podruzhko, Interval Representation of Polynomial Regressions (Editorial URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  16. F. S. Schweppe, “Recursive state estimation: unknown but bounded errors and system inputs,” IEEE Trans. Autom. Control 13, 22–28 (1968).

    Article  Google Scholar 

  17. P. L. Combettes, “Foundations of set-theoretic estimation,” Proc. IEEE 81, 182–208 (1993).

    Article  Google Scholar 

  18. Bounding Approaches to System Identification, Ed. by M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter (Plenum, New York, 1996).

  19. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis (Springer, London, 2001; Regular. Khaotich. Dinamika, Moscow, Izhevsk, 2007).

    Book  MATH  Google Scholar 

  20. A. V. Kurzhanskii, “Identification problem–the theory of guaranteed estimations,” Avtom. Telemekh., No. 4, 3–26 (1991).

    Google Scholar 

  21. F. L. Chernous’ko, Estimation of Phase State of Dynamical Systems (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  22. S. P. Shary, “Solvability of interval linear equations and data analysis under uncertainty,” Autom. Remote Control 73, 310–322 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Yu. Lemeshko and S. P. Postovalov, “On solving problems of statistical analysis of interval observations,” Vychisl. Tekhnol. 2 (1), 28–36 (1997).

    MathSciNet  Google Scholar 

  24. A. I. Orlov, Applied Statistics (Ekzamen, Moscow, 2004) [in Russian].

    Google Scholar 

  25. Yu. I. Alimov and Yu. A. Kravtsov, “Is probability a 'normal' physical quantity?,” Sov. Phys. Usp. 35, 606–622 (1992).

    Article  Google Scholar 

  26. V. N. Tutubalin, “Probability, computers, and the processing of experimental data,” Phys. Usp. 36, 628–641 (1993).

    Article  Google Scholar 

  27. R. B. Kearfott, M. Nakao, A. Neumaier, B. Rump, S. P. Shary, and P. van Hentenryck, “Standardized notation in interval analysis,” Vychisl. Tekhnol. 15 (1), 7–13 (2010).

    MATH  Google Scholar 

  28. S. P. Shary, Finite-Dimensional Interval Analysis (Inst. Vychisl. Tekhnol. SO RAN, Novosibirsk, 2016) [in Russian]. http://www.nsc.ru/interval/Library/InteBooks.

    MATH  Google Scholar 

  29. M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, and K. Zimmermann, Linear Optimization Problems with Inexact Data (Springer, New York, 2006; Regular. Khaotich. Dinamika, Moscow, Izhevsk, 2008).

    MATH  Google Scholar 

  30. E. Hansen and G. W. Walster, Global Optimization using Interval Analysis Methods: Revised and Expanded (CRC, Boca Raton, FL, 2003; Regular. Khaotich. Dinamika, Moscow, Izhevsk, 2012).

    Google Scholar 

  31. A. Neumaier, Interval Methods for Systems of Equations (Cambridge Univ. Press, Cambridge, 1990).

    MATH  Google Scholar 

  32. I. A. Sharaya, IntLinIncR3 Package for Visualization of Solutions Sets of Interval Linear Systems with Three Unknowns. http://www.nsc.ru/interval/Programing.

  33. A. V. Lakeev and S. I. Noskov, “On solutions array of linear equation with intervally predetermined operators and right part,” Sib. Mat. Zh. 35, 1074–1084 (1994).

    Article  Google Scholar 

  34. H. Beeck, “Uber die Struktur und Abschatzungen der Losungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten,” Computing 10, 231–244 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Alefeld and J. Herzberger, Introduction to Interval Computation (Elsevier, Amsterdam, 1987).

    MATH  Google Scholar 

  36. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis (SIAM, Philadelphia, 2009).

    Book  MATH  Google Scholar 

  37. S. P. Sharyi and I. A. Sharaya, “Recognition of solvability of interval equations and its applications to data analysis,” Vychisl. Tekhnol. 18 (3), 80–109 (2013).

    Google Scholar 

  38. S. P. Shary and L. A. Sharaya, “On solvability recognition for interval linear systems of equations,” Optimiz. Lett. 10, 247–260 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Ya. Remez, Principles of Numerical Methods of Chebyshev Approximation (Nauk. Dumka, Kiev, 1969) [in Russian].

    MATH  Google Scholar 

  40. V. Kreinovich and S. P. Shary, “Interval methods for data fitting under uncertainty: a probabilistic treatment,” Reliable Comput. 23, 105–140 (2016).

    MathSciNet  Google Scholar 

  41. A. S. Strekalovskii, Elements of Nonconvex Optimization (Nauka, Novosibirsk, 2003) [in Russian].

    MATH  Google Scholar 

  42. N. Z. Shor and N. G. Zhurbenko, “Minimization method using space stretching operation in the direction of two consistent gradients difference,” Kibernetika, No. 3, 51–59 (1971).

    MATH  Google Scholar 

  43. P. I. Stetsyuk, Ellipsoid Methods and r-Algorithms (Evrika, Kishinev, 2014) [in Russian].

    Google Scholar 

  44. E. A. Nurminski, “Separating plane algorithms for convex optimization,” Math. Programming. 76, 373–391 (1997).

    MathSciNet  MATH  Google Scholar 

  45. E. Vorontsova, “Extended separating plane algorithm and NSO-solutions of PageRank problem,” in Proceedings of the International Conference on Discrete Optimization and Operations Research DOOR 2016, Vladivostok, Russia, September 19–23, 2016, Lect. Notes Comput. Sci. (Springer International, Cham, Switzerland, 2016), Vol. 9869, pp. 547–560.

    Google Scholar 

  46. T. E. Sutto, H. C. de Long, and P. S. Trulove, “Physical properties of substituted imidazolium based ionic liquids gel electrolytes,” Zeitschr. Naturforsch. A 57, 839–846 (2002).

    Google Scholar 

  47. F. P. Vasil’ev, Numerical Methods for Solving Extremal Problems (Fizmatlit, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shary.

Additional information

Original Russian Text © S.P. Shary, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 6, pp. 3–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shary, S.P. Maximum compatibility method for data fitting under interval uncertainty. J. Comput. Syst. Sci. Int. 56, 897–913 (2017). https://doi.org/10.1134/S1064230717050100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230717050100

Navigation