Abstract
The lack of aerial physical interaction capability is one of the choke points limiting the extension of aerial robot applications, such as rescue missions and aerial maintenance. We present a new aerial robotic manipulator (AEROM) for aerial dexterous operations in this work. It contains a robotic manipulator with 6-degree-of-freedom and a compact flight platform. Firstly, we propose a quantitative capability index to evaluate and guide the mechanical design of the AEROM. Based on the proposed quantitative index, we construct a lightweight bird-inspired manipulator to imitate a raptor hindlimb. An additional telescopic joint and an end-effector consisting of three soft fingers allow the AEROM to execute aerial interaction tasks. In addition, the wrist joints enable independent control of the end-effector attitude regardless of the flight platform. After explicitly analyzing the multi-source disturbances during the aerial operation tasks, we develop a refined anti-disturbance controller to compensate for the disturbances with different characteristics. The proposed controller further improves the position accuracy of end-effector to enable dexterous operations during aerial interaction tasks. Finally, the physical experiments verify the effectiveness of the proposed AEROM system.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
Data Availability Statement
Not applicable.
References
Ollero, A., Tognon, M., Suarez, A., Lee, D., Franchi, A.: Past, present, and future of aerial robotic manipulators. IEEE Trans. Rob. 38(1), 626–645 (2022). https://doi.org/10.1109/TRO.2021.3084395
Hamaza, S., Georgilas, I., Fernandez, M., Sanchez, P., Richardson, T., Heredia, G., Ollero, A.: Sensor installation and retrieval operations using an unmanned aerial manipulator. IEEE Robot. Autom. Lett. 4(3), 2793–2800 (2019). https://doi.org/10.1109/LRA.2019.2918448
Li, L., Zhang, T., Zhong, H., Li, H., Zhang, H., Fan, S., Cao, Y.: Autonomous removing foreign objects for power transmission line by using a vision-guided unmanned aerial manipulator. J. Intell. Robot. Syst. 103, 1–14 (2021). https://doi.org/10.1007/s10846-021-01482-3
Ollero, A., Heredia, G., Franchi, A., Antonelli, G., Kondak, K., Sanfeliu, A., Viguria, A., Martinez-de Dios, J.R., Pierri, F., Cortes, J., Santamaria-Navarro, A., Trujillo Soto, M.A., Balachandran, R., Andrade-Cetto, J., Rodriguez, A.: The AEROARMS project: Aerial robots with advanced manipulation capabilities for inspection and maintenance. IEEE Robot. Autom. Mag. 25(4), 12–23 (2018). https://doi.org/10.1109/MRA.2018.2852789
Jimenez-Cano, A.E., Sanchez-Cuevas, P.J., Grau, P., Ollero, A., Heredia, G.: Contact-based bridge inspection multirotors: Design, modeling, and control considering the ceiling effect. IEEE Robot. Autom. Lett. 4(4), 3561–3568 (2019). https://doi.org/10.1109/LRA.2019.2928206
Sun, Y., Jing, Z., Dong, P., Huang, J., Chen, W., Leung, H.: A switchable unmanned aerial manipulator system for window-cleaning robot installation. IEEE Robot. Autom. Lett. 6(2), 3483–3490 (2021). https://doi.org/10.1109/LRA.2021.3062795
Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: A literature review. IEEE Robot. Autom. Lett. 3(3), 1957–1964 (2018). https://doi.org/10.1109/LRA.2018.2808541
Pounds, P.E.I., Dollar, A.M.: Stability of helicopters in compliant contact under PD-PID control. IEEE Trans. Rob. 30(6), 1472–1486 (2014). https://doi.org/10.1109/TRO.2014.2363371
Kondak, K., Huber, F., Schwarzbach, M., Laiacker, M., Sommer, D., Bejar, M., Ollero, A.: Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2107–2112 (2014). https://doi.org/10.1109/ICRA.2014.6907148
McArthur, D.R., Chowdhury, A.B., Cappelleri, D.J.: Autonomous door opening with the interacting-boomcopter unmanned aerial vehicle. J. Mech. Robot 12(2) (2020). https://doi.org/10.1115/1.4045843
Kremer, P., Sanchez-Lopez, J.L., Voos, H.: A hybrid modelling approach for aerial manipulators. J. Intell. Robot. Syst. 105(4), 74 (2022). https://doi.org/10.1007/s10846-022-01640-1
Caballero, A., Suarez, A., Real, F., Vega, V.M., Bejar, M., Rodriguez-Castaño, A., Ollero, A.: First experimental results on motion planning for transportation in aerial long-reach manipulators with two arms. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 8471–8477 (2018). https://doi.org/10.1109/IROS.2018.8594123
Suarez, A., Jimenez-Cano, A.E., Vega, V.M., Heredia, G., Rodriguez-Castaño, A., Ollero, A.: Design of a lightweight mechatronics system for aerial manipulation. Mechatronics 50, 30–44 (2018). https://doi.org/10.1016/j.mechatronics.2018.01.005
Kamel, M., Verling, S., Elkhatib, O., Sprecher, C., Wulkop, P., Taylor, Z., Siegwart, R., Gilitschenski, I.: The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robot. Autom. Mag. 25(4), 34–44 (2018). https://doi.org/10.1109/MRA.2018.2866758
Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfändler, P., Angst, U., Siegwart, R., Nieto, J.: Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans. Rob. 37(3), 709–722 (2021). https://doi.org/10.1109/TRO.2020.3036623
Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: 2011 Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2668–2673 (2011). https://doi.org/10.1109/IROS.2011.6094871
Tognon, M., Chávez, H.A.T., Gasparin, E., Sablé, Q., Bicego, D., Mallet, A., Lany, M., Santi, G., Revaz, B., Cortés, J., Franchi, A.: A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants. IEEE Robot. Autom. Lett. 4(2), 1846–1851 (2019). https://doi.org/10.1109/LRA.2019.2895880
Kanellakis, C., Nikolakopoulos, G.: Guidance for autonomous aerial manipulator using stereo vision. J. Intell. Robot. Syst. 100(3–4), 1545–1557 (2020). https://doi.org/10.1007/s10846-019-01060-8
Coelho, A., Sarkisov, Y., Wu, X., Mishra, H., Singh, H., Dietrich, A., Franchi, A., Kondak, K., Ott, C.: Whole-body teleoperation and shared control of redundant robots with applications to aerial manipulation. J. Intell. Robot. Syst. 102, 1–22 (2021). https://doi.org/10.1007/s10846-021-01365-7
Bodie, K., Tognon, M., Siegwart, R.: Dynamic end effector tracking with an omnidirectional parallel aerial manipulator. IEEE Robot. Autom. Lett. 6(4), 8165–8172 (2021). https://doi.org/10.1109/LRA.2021.3101864
Paul, H., Miyazaki, R., Ladig, R., Shimonomura, K.: Landing of a multirotor aerial vehicle on an uneven surface using multiple on-board manipulators. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1926–1933 (2019). https://doi.org/10.1109/IROS40897.2019.8968529
Guo, K., Jia, J., Yu, X., Guo, L., Xie, L.: Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances. Control Eng. Pract. 102, 104560 (2020). https://doi.org/10.1016/j.conengprac.2020.104560
Wang, S., Chen, J., He, X.: An adaptive composite disturbance rejection for attitude control of the agricultural quadrotor UAV. ISA Trans. 129, 564–579 (2022). https://doi.org/10.1016/j.isatra.2022.01.012
Jia, J., Guo, K., Yu, X., Guo, L., Xie, L.: Agile flight control under multiple disturbances for quadrotor: Algorithms and evaluation. IEEE Trans. Aerosp. Electron. Syst. 58(4), 3049–3062 (2022). https://doi.org/10.1109/TAES.2022.3143781
Kim, S., Choi, S., Kim, H., Shin, J., Shim, H., Kim, H.J.: Robust control of an equipment-added multirotor using disturbance observer. IEEE Trans. Control Syst. Technol. 26(4), 1524–1531 (2018). https://doi.org/10.1109/TCST.2017.2711602
Zhang, G., He, Y., Dai, B., Gu, F., Han, J., Liu, G.: Robust control of an aerial manipulator based on a variable inertia parameters model. IEEE Trans. Ind. Electron. 67(11), 9515–9525 (2020). https://doi.org/10.1109/TIE.2019.2956414
Aydemir, M., Arıkan, K.B.: Evaluation of the disturbance rejection performance of an aerial manipulator. J. Intell. Robot. Syst. 97, 451–469 (2020). https://doi.org/10.1007/s10846-019-01013-1
Nava, G., Sablé, Q., Tognon, M., Pucci, D., Franchi, A.: Direct force feedback control and online multi-task optimization for aerial manipulators. IEEE Robot. Autom. Lett. 5(2), 331–338 (2019). https://doi.org/10.1109/LRA.2019.2958473
Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., Bicego, D., Franchi, A.: 6D interaction control with aerial robots: The flying end-effector paradigm. Int. J. Robot. Res. 38(9), 1045–1062 (2019). https://doi.org/10.1177/0278364919856694
Lee, D., Seo, H., Jang, I., Lee, S.J., Kim, H.J.: Aerial manipulator pushing a movable structure using a DOB-based robust controller. IEEE Robot. Autom. Lett. 6(2), 723–730 (2021). https://doi.org/10.1109/LRA.2020.3047779
Cuniato, E., Lawrance, N., Tognon, M., Siegwart, R.: Power-based safety layer for aerial vehicles in physical interaction using Lyapunov exponents. IEEE Robot. Autom. Lett. 7(3), 6774–6781 (2022). https://doi.org/10.1109/LRA.2022.3176959
Zhang, W., Liu, Q., Wang, M., Jia, J., Lyu, S., Guo, K., Yu, X., Guo, L.: Design of an aerial manipulator system applied to capture missions. Proc. Int. Conf. Unmanned Aircr. Syst., 1063–1069 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476743
Falk, A.R., Martin, L.D., Hasiotis, S.T.: A morphologic criterion to distinguish bird tracks. J. Ornithol. 152(3), 701–716 (2011). https://doi.org/10.1007/s10336-011-0645-x
Welde, J., Paulos, J., Kumar, V.: Dynamically feasible task space planning for underactuated aerial manipulators. IEEE Robot. Autom. Lett. 6(2), 3232–3239 (2021). https://doi.org/10.1109/LRA.2021.3051572
Garofalo, G., Beck, F., Ott, C.: Task-space tracking control for underactuated aerial manipulators. In: 2018 Eur. Control Conf., pp. 628–634 (2018). https://doi.org/10.23919/ECC.2018.8550248
Guo, L., Chen, W.-H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109–125 (2005). https://doi.org/10.1002/rnc.978
Yu, X., Zhu, Y., Qiao, J., Guo, L.: Anti-disturbance controllability analysis and enhanced antidisturbance controller design with application to flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 57(5), 3393–3404 (2021). https://doi.org/10.1109/TAES.2021.3079566
Zhu, Y., Guo, L., Qiao, J., Li, W.: An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances. Control Eng. Pract. 84, 274–283 (2019). https://doi.org/10.1016/j.conengprac.2018.11.001
Funding
This work was supported in part by the National Key Research and Development Program of China (Grant Number 2022YFB4701301), the National Natural Science Foundation of China (Grant Numbers 61973012, 62388101, 62273023), the Key Research and Development Program of Zhejiang (Grant Number 2021C03158), the Major Science and Technology Innovation Program of Hangzhou (Grant Number 2022AIZD0137), and the Beijing Nova Program (Grant Number 20230484266).
Author information
Authors and Affiliations
Contributions
Conceptualization: Qianyuan Liu, Kexin Guo, Xiang Yu, and Lei Guo; methodology: Qianyuan Liu, Kexin Guo, and Xiang Yu; software: Qianyuan Liu and Zeshuai Chen; validation: Qianyuan Liu, Yuhang Liu, and Zeshuai Chen; formal analysis: Qianyuan Liu, Kexin Guo, and Xiang Yu; investigation: Qianyuan Liu, Kexin Guo, and Xiang Yu; writing original draft preparation: Qianyuan Liu, Kexin Guo, Xiang Yu, and Youmin Zhang; writing review and editing: Qianyuan Liu, Kexin Guo, Xiang Yu and Youmin Zhang; funding acquisition: Kexin Guo, Xiang Yu, and Lei Guo; resources: Kexin Guo, Xiang Yu, and Lei Guo; supervision: Lei Guo;
Corresponding authors
Ethics declarations
Competing Interests
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, Q., Liu, Y., Chen, Z. et al. A Compact Aerial Manipulator: Design and Control for Dexterous Operations. J Intell Robot Syst 110, 66 (2024). https://doi.org/10.1007/s10846-024-02090-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-024-02090-7