Abstract
Aerial manipulators, composed of multirotors and robotic arms, have a structure and function highly reminiscent of avian species. This paper studies the tracking control problem for aerial manipulators. We propose an avian-inspired aerial manipulation system, which includes an avian-inspired robotic arm design, a Recursive Newton-Euler (RNE) method-based nonlinear flight controller, and a coordinated controller with two modes. Compared to existing methods, our proposed approach offers several attractive features. First, the morphological characteristics of avian species are used to determine the size proportion of the multirotor and the robotic arm in the aerial manipulator. Second, the dynamic coupling of the aerial manipulator is addressed by the RNE-based flight controller and a dual-mode coordinated controller. Specifically, under our proposed algorithm, the aerial manipulator can stabilize the end-effector’s pose, similar to avian head stabilization. The proposed approach is verified through three numerical experiments. The results show that even when the quadcopter is disturbed by different forces, the position error of the end-effector achieves millimeter-level accuracy, and the attitude error remains within \(1^{\circ }\). The limitation of this work is not considering aggressive manipulation like that seen in birds. Addressing this through future studies that explore real-world experiments will be a key direction for research.
Similar content being viewed by others
Data availability
Enquiries about data availability should be directed to the authors.
References
Jimenez-Cano, A., Braga, J., Heredia, G., Ollero, A.: Aerial manipulator for structure inspection by contact from the underside. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1879–1884 (2015). https://doi.org/10.1109/IROS.2015.7353623
Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfändler, P., Angst, U., Siegwart, R., Nieto, J.: Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans. Robot. 37(3), 709–722 (2020). https://doi.org/10.1109/TRO.2020.3036623
Cao, H., Shen, J., Liu, C., Zhu, B., Zhao, S.: Motion planning for aerial pick-and-place with geometric feasibility constraints. IEEE Trans. Autom. Sci. Eng. (2024). https://doi.org/10.1109/TASE.2024.3382296
Ramon-Soria, P., Arrue, B.C., Ollero, A.: Grasp planning and visual servoing for an outdoors aerial dual manipulator. Engineering 6(1), 77–88 (2020). https://doi.org/10.1016/j.eng.2019.11.003
Steich, K., Kamel, M., Beardsley, P., Obrist, M.K., Siegwart, R., Lachat, T.: Tree cavity inspection using aerial robots. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), pp. 4856–4862 (2016). https://doi.org/10.1109/IROS.2016.7759713
Zhang, K., Chermprayong, P., Xiao, F., Tzoumanikas, D., Dams, B., Kay, S., Kocer, B.B., Burns, A., Orr, L., Alhinai, T.: Aerial additive manufacturing with multiple autonomous robots. Nature 609(7928), 709–717 (2022). https://doi.org/10.1038/s41586-024-07030-x
Ollero, A., Tognon, M., Suarez, A., Lee, D., Franchi, A.: Past, present, and future of aerial robotic manipulators. IEEE Trans. Robot. 38(1), 626–645 (2021). https://doi.org/10.1109/TRO.2021.3084395
Meng, J., Buzzatto, J., Liu, Y., Liarokapis, M.: On aerial robots with grasping and perching capabilities: a comprehensive review. Front. Robot. AI 8, 739173 (2022). https://doi.org/10.3389/frobt.2021.739173
Ruggiero, F., Trujillo, M.A., Cano, R., Ascorbe, H., Viguria, A., Peréz, C., Lippiello, V., Ollero, A., Siciliano, B.: A multilayer control for multirotor UAVs equipped with a servo robot arm. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, pp. 4014–4020 (2015). https://doi.org/10.1109/ICRA.2015.7139760
Xilun, D., Pin, G., Kun, X., Yushu, Y.: A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems. Chin. J. Aeronaut. 32(1), 200–214 (2019). https://doi.org/10.1016/j.cja.2018.05.012
Thomas, J., Loianno, G., Polin, J., Sreenath, K., Kumar, V.: Toward autonomous avian-inspired grasping for micro aerial vehicles. Bioinspiration & Biomimetics 9(2), 025010 (2014). https://doi.org/10.1088/1748-3182/9/2/025010
Cao, H., Li, Y., Liu, C., Zhao, S.: ESO-based robust and high-precision tracking control for aerial manipulation. IEEE Trans. Autom. Sci. Eng. 21(2), 2139–2155 (2024). https://doi.org/10.1109/TASE.2023.3260874
Bodie, K., Tognon, M., Siegwart, R.: Dynamic end effector tracking with an omnidirectional parallel aerial manipulator. IEEE Robot. Autom. Lett. 6(4), 8165–8172 (2021). https://doi.org/10.1109/LRA.2021.3101864
Zhang, G., He, Y., Dai, B., Gu, F., Han, J., Liu, G.: Robust control of an aerial manipulator based on a variable inertia parameters model. IEEE Trans. Ind. Electron. 67(11), 9515–9525 (2019). https://doi.org/10.1109/TIE.2019.2956414
Baizid, K., Giglio, G., Pierri, F., Trujillo, M.A., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., Ollero, A.: Behavioral control of unmanned aerial vehicle manipulator systems. Auton. Robot. 41, 1203–1220 (2017). https://doi.org/10.1007/s10514-016-9590-0
Cao, H., Zhao, S.: Predictive damped inverse kinematics for redundant and underactuated robotic systems. In: Proceedings of 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, pp. 348–353 (2020). https://doi.org/10.1109/ICCA51439.2020.9264372
Lunni, D., Santamaria-Navarro, A., Rossi, R., Rocco, P., Bascetta, L., Andrade-Cetto, J.: Nonlinear model predictive control for aerial manipulation. In: Proceedings of 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, Florida, USA, pp. 87–93 (2017). https://doi.org/10.1109/ICUAS.2017.7991347
Danko, T.W., Chaney, K.P., Oh, P.Y.: A parallel manipulator for mobile manipulating uavs. In: Proceedings of 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), London, UK, pp. 1–6 (2015). https://doi.org/10.1109/TePRA.2015.7219682
Wang, M., Chen, Z., Guo, K., Yu, X., Zhang, Y., Guo, L., Wang, W.: Millimeter-level pick and peg-in-hole task achieved by aerial manipulator. IEEE Trans. Robot. 40, 1242–1260 (2023). https://doi.org/10.1109/TRO.2023.3338956
Huber, F., Kondak, K., Krieger, K., Sommer, D., Schwarzbach, M., Laiacker, M., Kossyk, I., Parusel, S., Haddadin, S., Albu-Schäffer, A.: First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 3452–3457 (2013). https://doi.org/10.1109/IROS.2013.6696848
Suarez, A., Jimenez-Cano, A., Vega, V., Heredia, G., Rodriguez-Castaño, A., Ollero, A.: Lightweight and human-size dual arm aerial manipulator. In: Proceedings of 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, Florida, USA, pp. 1778–1784 (2017). https://doi.org/10.1109/ICUAS.2017.7991357
Hang, K., Lyu, X., Song, H., Stork, J.A., Dollar, A.M., Kragic, D., Zhang, F.: Perching and resting-a paradigm for UAV maneuvering with modularized landing gears. Sci. Robot. 4(28), 6637 (2019). https://doi.org/10.1126/scirobotics.aau6637
Roderick, W.R., Cutkosky, M.R., Lentink, D.: Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Robot. 6(61), 7562 (2021). https://doi.org/10.1126/scirobotics.abj7562
Friedman, M.B.: Visual control of head movements during Avian locomotion. Nature 255(5503), 67–69 (1975). https://doi.org/10.1038/255067a0
Frost, B.J.: Bird head stabilization. Curr. Biol. 19(8), 315–316 (2009). https://doi.org/10.1016/j.cub.2009.02.002
Katzir, G., Schechtman, E., Carmi, N., Weihs, D.: Head stabilization in herons. J. Comp. Physiol. A 187, 423–432 (2001). https://doi.org/10.1007/s003590100210
Pierri, F., Muscio, G., Caccavale, F.: An adaptive hierarchical control for aerial manipulators. Robotica 36(10), 1527–1550 (2018). https://doi.org/10.1017/S0263574718000553
Kannan, S., Olivares-Mendez, M.A., Voos, H.: Modeling and control of aerial manipulation vehicle with visual sensor*. In: IFAC Proceedings 2nd IFAC Workshop on Research, Education and Development of Unmanned Aerial Systems, vol. 46, no. 30, pp. 303–309 (2013) https://doi.org/10.3182/20131120-3-FR-4045.00053
Sun, Y., Jing, Z., Dong, P., Huang, J., Chen, W., Leung, H.: A switchable unmanned aerial manipulator system for window-cleaning robot installation. IEEE Robot. Autom. Lett. 6(2), 3483–3490 (2021). https://doi.org/10.1109/LRA.2021.3062795
Craig, J.J.: Introduction to Robotics: Mechanics and Control, 4th edn. Person, London (2017)
Wang, M., Chen, Z., Guo, K., Yu, X., Zhang, Y., Guo, L., Wang, W.: Millimeter-level pick and peg-in-hole task achieved by aerial manipulator. IEEE Trans. Robot. 40, 1242–1260 (2024). https://doi.org/10.1109/TRO.2023.3338956
Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)
Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (2017)
Pete, A., Kress, D., Dimitrov, M., Lentink, D.: The role of passive avian head stabilization in flapping flight. J. Royal Soc. Interface Royal Soc. (2015). https://doi.org/10.1098/rsif.2015.0508
Heredia, G., Jimenez-Cano, A., Sanchez, I., Llorente, D., Vega, V., Braga, J., Acosta, J., Ollero, A.: Control of a multirotor outdoor aerial manipulator. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, Illinois, USA, pp. 3417–3422 (2014). https://doi.org/10.1109/IROS.2014.6943038
Tzoumanikas, D., Graule, F., Yan, Q., Shah, D., Popovic, M., Leutenegger, S.: Aerial manipulation using hybrid force and position nmpc applied to aerial writing. ArXiv (2020) https://doi.org/10.48550/arXiv.2006.02116arXiv:abs/2006.02116
Kim, S., Seo, H., Kim, H.J.: Operating an unknown drawer using an aerial manipulator. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, pp. 5503–5508 (2015). https://doi.org/10.1109/ICRA.2015.7139968
Meza-Sánchez, M., Clemente, E., Rodríguez-Liñán, M., Olague, G.: Synthetic-analytic behavior-based control framework: constraining velocity in tracking for nonholonomic wheeled mobile robots. Inf. Sci. 501, 436–459 (2019). https://doi.org/10.1016/j.ins.2019.06.025
Mart’i-Saumell, J., Solà, J., Santamaria-Navarro, A., Andrade-Cetto, J.: Full-body torque-level non-linear model predictive control for aerial manipulation. arXiv:abs/2107.03722 (2021)
Funding
This work was supported by Research Center for Industries of the Future at Westlake University (Grant No. WU2022C027).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ji, M., Shen, J., Cao, H. et al. Avian-inspired high-precision tracking control for aerial manipulators. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-10584-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11071-024-10584-0