Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Avian-inspired high-precision tracking control for aerial manipulators

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Aerial manipulators, composed of multirotors and robotic arms, have a structure and function highly reminiscent of avian species. This paper studies the tracking control problem for aerial manipulators. We propose an avian-inspired aerial manipulation system, which includes an avian-inspired robotic arm design, a Recursive Newton-Euler (RNE) method-based nonlinear flight controller, and a coordinated controller with two modes. Compared to existing methods, our proposed approach offers several attractive features. First, the morphological characteristics of avian species are used to determine the size proportion of the multirotor and the robotic arm in the aerial manipulator. Second, the dynamic coupling of the aerial manipulator is addressed by the RNE-based flight controller and a dual-mode coordinated controller. Specifically, under our proposed algorithm, the aerial manipulator can stabilize the end-effector’s pose, similar to avian head stabilization. The proposed approach is verified through three numerical experiments. The results show that even when the quadcopter is disturbed by different forces, the position error of the end-effector achieves millimeter-level accuracy, and the attitude error remains within \(1^{\circ }\). The limitation of this work is not considering aggressive manipulation like that seen in birds. Addressing this through future studies that explore real-world experiments will be a key direction for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Notes

  1. https://www.youtube.com/watch?v=JGArTWOJtXs.

  2. https://ebird.org/home.

References

  1. Jimenez-Cano, A., Braga, J., Heredia, G., Ollero, A.: Aerial manipulator for structure inspection by contact from the underside. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1879–1884 (2015). https://doi.org/10.1109/IROS.2015.7353623

  2. Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfändler, P., Angst, U., Siegwart, R., Nieto, J.: Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans. Robot. 37(3), 709–722 (2020). https://doi.org/10.1109/TRO.2020.3036623

    Article  Google Scholar 

  3. Cao, H., Shen, J., Liu, C., Zhu, B., Zhao, S.: Motion planning for aerial pick-and-place with geometric feasibility constraints. IEEE Trans. Autom. Sci. Eng. (2024). https://doi.org/10.1109/TASE.2024.3382296

    Article  Google Scholar 

  4. Ramon-Soria, P., Arrue, B.C., Ollero, A.: Grasp planning and visual servoing for an outdoors aerial dual manipulator. Engineering 6(1), 77–88 (2020). https://doi.org/10.1016/j.eng.2019.11.003

    Article  Google Scholar 

  5. Steich, K., Kamel, M., Beardsley, P., Obrist, M.K., Siegwart, R., Lachat, T.: Tree cavity inspection using aerial robots. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), pp. 4856–4862 (2016). https://doi.org/10.1109/IROS.2016.7759713

  6. Zhang, K., Chermprayong, P., Xiao, F., Tzoumanikas, D., Dams, B., Kay, S., Kocer, B.B., Burns, A., Orr, L., Alhinai, T.: Aerial additive manufacturing with multiple autonomous robots. Nature 609(7928), 709–717 (2022). https://doi.org/10.1038/s41586-024-07030-x

    Article  ADS  Google Scholar 

  7. Ollero, A., Tognon, M., Suarez, A., Lee, D., Franchi, A.: Past, present, and future of aerial robotic manipulators. IEEE Trans. Robot. 38(1), 626–645 (2021). https://doi.org/10.1109/TRO.2021.3084395

    Article  Google Scholar 

  8. Meng, J., Buzzatto, J., Liu, Y., Liarokapis, M.: On aerial robots with grasping and perching capabilities: a comprehensive review. Front. Robot. AI 8, 739173 (2022). https://doi.org/10.3389/frobt.2021.739173

    Article  Google Scholar 

  9. Ruggiero, F., Trujillo, M.A., Cano, R., Ascorbe, H., Viguria, A., Peréz, C., Lippiello, V., Ollero, A., Siciliano, B.: A multilayer control for multirotor UAVs equipped with a servo robot arm. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, pp. 4014–4020 (2015). https://doi.org/10.1109/ICRA.2015.7139760

  10. Xilun, D., Pin, G., Kun, X., Yushu, Y.: A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems. Chin. J. Aeronaut. 32(1), 200–214 (2019). https://doi.org/10.1016/j.cja.2018.05.012

    Article  Google Scholar 

  11. Thomas, J., Loianno, G., Polin, J., Sreenath, K., Kumar, V.: Toward autonomous avian-inspired grasping for micro aerial vehicles. Bioinspiration & Biomimetics 9(2), 025010 (2014). https://doi.org/10.1088/1748-3182/9/2/025010

    Article  ADS  Google Scholar 

  12. Cao, H., Li, Y., Liu, C., Zhao, S.: ESO-based robust and high-precision tracking control for aerial manipulation. IEEE Trans. Autom. Sci. Eng. 21(2), 2139–2155 (2024). https://doi.org/10.1109/TASE.2023.3260874

    Article  Google Scholar 

  13. Bodie, K., Tognon, M., Siegwart, R.: Dynamic end effector tracking with an omnidirectional parallel aerial manipulator. IEEE Robot. Autom. Lett. 6(4), 8165–8172 (2021). https://doi.org/10.1109/LRA.2021.3101864

    Article  Google Scholar 

  14. Zhang, G., He, Y., Dai, B., Gu, F., Han, J., Liu, G.: Robust control of an aerial manipulator based on a variable inertia parameters model. IEEE Trans. Ind. Electron. 67(11), 9515–9525 (2019). https://doi.org/10.1109/TIE.2019.2956414

    Article  Google Scholar 

  15. Baizid, K., Giglio, G., Pierri, F., Trujillo, M.A., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., Ollero, A.: Behavioral control of unmanned aerial vehicle manipulator systems. Auton. Robot. 41, 1203–1220 (2017). https://doi.org/10.1007/s10514-016-9590-0

    Article  Google Scholar 

  16. Cao, H., Zhao, S.: Predictive damped inverse kinematics for redundant and underactuated robotic systems. In: Proceedings of 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, pp. 348–353 (2020). https://doi.org/10.1109/ICCA51439.2020.9264372

  17. Lunni, D., Santamaria-Navarro, A., Rossi, R., Rocco, P., Bascetta, L., Andrade-Cetto, J.: Nonlinear model predictive control for aerial manipulation. In: Proceedings of 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, Florida, USA, pp. 87–93 (2017). https://doi.org/10.1109/ICUAS.2017.7991347

  18. Danko, T.W., Chaney, K.P., Oh, P.Y.: A parallel manipulator for mobile manipulating uavs. In: Proceedings of 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), London, UK, pp. 1–6 (2015). https://doi.org/10.1109/TePRA.2015.7219682

  19. Wang, M., Chen, Z., Guo, K., Yu, X., Zhang, Y., Guo, L., Wang, W.: Millimeter-level pick and peg-in-hole task achieved by aerial manipulator. IEEE Trans. Robot. 40, 1242–1260 (2023). https://doi.org/10.1109/TRO.2023.3338956

    Article  Google Scholar 

  20. Huber, F., Kondak, K., Krieger, K., Sommer, D., Schwarzbach, M., Laiacker, M., Kossyk, I., Parusel, S., Haddadin, S., Albu-Schäffer, A.: First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 3452–3457 (2013). https://doi.org/10.1109/IROS.2013.6696848

  21. Suarez, A., Jimenez-Cano, A., Vega, V., Heredia, G., Rodriguez-Castaño, A., Ollero, A.: Lightweight and human-size dual arm aerial manipulator. In: Proceedings of 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, Florida, USA, pp. 1778–1784 (2017). https://doi.org/10.1109/ICUAS.2017.7991357

  22. Hang, K., Lyu, X., Song, H., Stork, J.A., Dollar, A.M., Kragic, D., Zhang, F.: Perching and resting-a paradigm for UAV maneuvering with modularized landing gears. Sci. Robot. 4(28), 6637 (2019). https://doi.org/10.1126/scirobotics.aau6637

    Article  Google Scholar 

  23. Roderick, W.R., Cutkosky, M.R., Lentink, D.: Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Robot. 6(61), 7562 (2021). https://doi.org/10.1126/scirobotics.abj7562

    Article  Google Scholar 

  24. Friedman, M.B.: Visual control of head movements during Avian locomotion. Nature 255(5503), 67–69 (1975). https://doi.org/10.1038/255067a0

    Article  ADS  Google Scholar 

  25. Frost, B.J.: Bird head stabilization. Curr. Biol. 19(8), 315–316 (2009). https://doi.org/10.1016/j.cub.2009.02.002

    Article  Google Scholar 

  26. Katzir, G., Schechtman, E., Carmi, N., Weihs, D.: Head stabilization in herons. J. Comp. Physiol. A 187, 423–432 (2001). https://doi.org/10.1007/s003590100210

    Article  Google Scholar 

  27. Pierri, F., Muscio, G., Caccavale, F.: An adaptive hierarchical control for aerial manipulators. Robotica 36(10), 1527–1550 (2018). https://doi.org/10.1017/S0263574718000553

    Article  Google Scholar 

  28. Kannan, S., Olivares-Mendez, M.A., Voos, H.: Modeling and control of aerial manipulation vehicle with visual sensor*. In: IFAC Proceedings 2nd IFAC Workshop on Research, Education and Development of Unmanned Aerial Systems, vol. 46, no. 30, pp. 303–309 (2013) https://doi.org/10.3182/20131120-3-FR-4045.00053

  29. Sun, Y., Jing, Z., Dong, P., Huang, J., Chen, W., Leung, H.: A switchable unmanned aerial manipulator system for window-cleaning robot installation. IEEE Robot. Autom. Lett. 6(2), 3483–3490 (2021). https://doi.org/10.1109/LRA.2021.3062795

    Article  Google Scholar 

  30. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 4th edn. Person, London (2017)

    Google Scholar 

  31. Wang, M., Chen, Z., Guo, K., Yu, X., Zhang, Y., Guo, L., Wang, W.: Millimeter-level pick and peg-in-hole task achieved by aerial manipulator. IEEE Trans. Robot. 40, 1242–1260 (2024). https://doi.org/10.1109/TRO.2023.3338956

    Article  Google Scholar 

  32. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  33. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  34. Pete, A., Kress, D., Dimitrov, M., Lentink, D.: The role of passive avian head stabilization in flapping flight. J. Royal Soc. Interface Royal Soc. (2015). https://doi.org/10.1098/rsif.2015.0508

    Article  Google Scholar 

  35. Heredia, G., Jimenez-Cano, A., Sanchez, I., Llorente, D., Vega, V., Braga, J., Acosta, J., Ollero, A.: Control of a multirotor outdoor aerial manipulator. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, Illinois, USA, pp. 3417–3422 (2014). https://doi.org/10.1109/IROS.2014.6943038

  36. Tzoumanikas, D., Graule, F., Yan, Q., Shah, D., Popovic, M., Leutenegger, S.: Aerial manipulation using hybrid force and position nmpc applied to aerial writing. ArXiv (2020) https://doi.org/10.48550/arXiv.2006.02116arXiv:abs/2006.02116

  37. Kim, S., Seo, H., Kim, H.J.: Operating an unknown drawer using an aerial manipulator. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, pp. 5503–5508 (2015). https://doi.org/10.1109/ICRA.2015.7139968

  38. Meza-Sánchez, M., Clemente, E., Rodríguez-Liñán, M., Olague, G.: Synthetic-analytic behavior-based control framework: constraining velocity in tracking for nonholonomic wheeled mobile robots. Inf. Sci. 501, 436–459 (2019). https://doi.org/10.1016/j.ins.2019.06.025

    Article  MathSciNet  Google Scholar 

  39. Mart’i-Saumell, J., Solà, J., Santamaria-Navarro, A., Andrade-Cetto, J.: Full-body torque-level non-linear model predictive control for aerial manipulation. arXiv:abs/2107.03722 (2021)

Download references

Funding

This work was supported by Research Center for Industries of the Future at Westlake University (Grant No. WU2022C027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazi Cao.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Shen, J., Cao, H. et al. Avian-inspired high-precision tracking control for aerial manipulators. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-10584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-10584-0

Keywords