Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A sensor fusion and support vector machine based approach for recognition of complex machining conditions

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

During the machining process of thin-walled parts, machine tool wear and work-piece deformation always co-exist, which make the recognition of machining conditions very difficult. Existing machining condition monitoring approaches usually consider only one single condition, i.e., either tool wear or work-piece deformation. In order to close this gap, a machining condition recognition approach based on multi-sensor fusion and support vector machine (SVM) is proposed. A dynamometer sensor and an acceleration sensor are used to collect cutting force signals and vibration signals respectively. Wavelet decomposition is utilized as a signal processing method for the extraction of signal characteristics including means and variances of a certain degree of the decomposed signals. SVM is used as a condition recognition method by using the means and variances of signals as well as cutting parameters as the input vector. Information fusion theory at the feature level is adopted to assist the machining condition recognition. Experiments are designed to demonstrate and validate the feasibility of the proposed approach. A condition recognition accuracy of about 90 % has been achieved during the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abellan-Nebot, J. V., & Romero Subirón, F. (2010). A review of machining monitoring systems based on artificial intelligence process models. The International Journal of Advanced Manufacturing Technology, 47(1), 237–257. doi:10.1007/s00170-009-2191-8.

    Article  Google Scholar 

  • Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23(2), 539–546. doi:10.1016/j.ymssp.2008.02.010.

    Article  Google Scholar 

  • Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent advances in modelling of metal machining processes. CIRP Annals-Manufacturing Technology, 62(2), 695–718. doi:10.1016/j.cirp.2013.05.006.

    Article  Google Scholar 

  • Brecher, C., Quintana, G., Rudolf, T., & Ciurana, J. (2011). Use of NC kernel data for surface roughness monitoring in milling operations. The International Journal of Advanced Manufacturing Technology, 53(9), 953–962. doi:10.1007/s00170-010-2904-z.

    Article  Google Scholar 

  • Castejón, M., Alegre, E., Barreiro, J., & Hernández, L. K. (2007). On-line tool wear monitoring using geometric descriptors from digital images. International Journal of Machine Tools and Manufacture, 47(12), 1847–1853. doi:10.1016/j.ijmachtools.2007.04.001.

    Article  Google Scholar 

  • Denkena, B., Möhring, H. C., & Litwinski, K. M. (2008). Design of dynamic multi sensor systems. Production Engineering, 2(3), 327–331. doi:10.1007/s11740-008-0102-8.

    Article  Google Scholar 

  • Gadelmawla, E. S. (2011). Estimation of surface roughness for turning operations using image texture features. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8), 1281–1292. doi:10.1177/2041297510393643.

    Article  Google Scholar 

  • Ghani, J. A., Rizal, M., Nuawi, M. Z., Ghazali, M. J., & Haron, C. H. C. (2011). Monitoring online cutting tool wear using low-cost technique and user-friendly GUI. Wear, 271(9), 2619–2624. doi:10.1016/j.wear.2011.01.038.

    Article  Google Scholar 

  • Jiang, P., Jia, F., & Wang, Y. (2014). Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. Journal of Intelligent Manufacturing, 25(3), 521–538. doi:10.1007/s10845-012-0703-0.

    Article  Google Scholar 

  • Li, X., Yao, Y., & Yuan, Z. (1997). On-line tool condition monitoring system with wavelet fuzzy neural network. Journal of Intelligent Manufacturing, 8(4), 271–276. doi:10.1023/A:1018585527465.

    Article  Google Scholar 

  • Li, X., Dong, S., & Yuan, Z. (1999). Discrete wavelet transform for tool breakage monitoring. International Journal of Machine Tools and Manufacture, 39(12), 1935–1944. doi:10.1016/S0890-6955(99)00021-8.

    Article  Google Scholar 

  • Li, Y., Liu, C., & Gao, J. X. (2015). An integrated feature-based dynamic control system for on-line machining, inspection and monitoring. Integrated Computer-Aided Engineering, 22(2), 187–200. doi:10.3233/ICA-150483.

    Article  Google Scholar 

  • Liang, S. Y., Hecker, R. L., & Landers, R. G. (2004). Machining process monitoring and control: The state-of-the-art. Journal of Manufacturing Science and Engineering, Transaction of the ASME, 126(2), 297–310. doi:10.1115/1.1707035.

    Article  Google Scholar 

  • Liu, T. I., Kumagai, A., Wang, Y. C., Song, S. D., Fu, Z., & Lee, J. (2010). On-line monitoring of boring tools for control of boring operations. Robotics and Computer Integrated Manufacturing, 26(3), 230–239. doi:10.1016/j.rcim.2009.11.002.

    Article  Google Scholar 

  • Mallat, S. G. (1999). A wavelet tour of signal processing (2nd ed.). New York: Academic Press.

    Google Scholar 

  • Möhring, H. C., Litwinski, K. M., & Gümmer, O. (2010). Process monitoring with sensory machine tool components. CIRP Annals-Manufacturing Technology, 59(1), 383–386. doi:10.1016/j.cirp.2010.03.087.

    Article  Google Scholar 

  • Niu, G., & Yang, B. S. (2010). Intelligent condition monitoring and prognostics system based on data-fusion strategy. Expert Systems with Applications, 37(12), 8831–8840. doi:10.1016/j.eswa.2010.06.014.

    Article  Google Scholar 

  • Nouri, M., Fussell, B. K., & Ziniti, B. L. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1–13. doi:10.1016/j.ijmachtools.2014.10.011.

    Article  Google Scholar 

  • Paul, P. S., & Varadarajan, A. S. (2012). A multi-sensor fusion model based on artificial neural network to predict tool wear during hard turning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(5), 853–860. doi:10.1177/0954405411432381.

    Article  Google Scholar 

  • Peng, Z. K., & Chu, F. L. (2004). Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mechanical Systems and Signal Processing, 18(2), 199–221. doi:10.1016/S0888-3270(03)00075-X.

    Article  Google Scholar 

  • Quintana, G., Garcia-Romeu, M. L., & Ciurana, J. (2011). Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22(4), 607–617. doi:10.1007/s10845-009-0323-5.

    Article  Google Scholar 

  • Ratchev, S., Liu, S., & Becker, A. A. (2005). Error compensation strategy in milling flexible thin-wall parts. Journal of Materials Processing Technology, 162–163(15), 673–681. doi:10.1016/j.jmatprotec.2005.02.192.

    Article  Google Scholar 

  • Rehorn, A. G., Jiang, J., & Orban, P. E. (2005). State-of-the-art methods and results in tool condition monitoring: A review. The International Journal of Advanced Manufacturing Technology, 26(7), 693–710. doi:10.1007/s00170-004-2038-2.

    Article  Google Scholar 

  • Shi, D., Axinte, D. A., & Gindy, N. N. (2007). Development of an online machining process monitoring system: A case study of the broaching process. The International Journal of Advanced Manufacturing Technology, 34(1), 34–46. doi:10.1007/s00170-006-0588-1.

    Article  Google Scholar 

  • Snidaro, L., García, J., & Llinas, J. (2015). Context-based information fusion: A survey and discussion. Information Fusion, 25, 16–31. doi:10.1016/j.inffus.2015.01.002.

    Article  Google Scholar 

  • Tamizharasan, T., Barnabas, J. K., & Pakkirisamy, V. (2012). Optimization of turning parameters by using design of experiments and simulated annealing algorithm based on audible acoustic emission signals. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(7), 1159–1173. doi:10.1177/0954405412442779.

    Article  Google Scholar 

  • Tangjitsitcharoen, S., Saksri, T., & Ratanakuakangwan, S. (2015). Advance in chatter detection in ball end milling process by utilizing wavelet transform. Journal of Intelligent Manufacturing, 26(3), 485–499. doi:10.1007/s10845-013-0805-3.

    Article  Google Scholar 

  • Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals-Manufacturing Technology, 59(2), 717–739. doi:10.1016/j.cirp.2010.05.010.

    Article  Google Scholar 

  • Widodo, A., & Yang, B. S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(6), 2560–2574. doi:10.1016/j.ymssp.2006.12.007.

    Article  Google Scholar 

  • Wuest, T., Irgens, C., & Thoben, K. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167–1180. doi:10.1007/s10845-013-0761-y.

    Article  Google Scholar 

  • Yoshioka, H., Shinno, H., & Sawano, H. (2014). Monitoring of distance between diamond tool edge and workpiece surface in ultraprecision cutting using evanescent light. CIRP Annals-Manufacturing Technology, 63(1), 341–344. doi:10.1016/j.cirp.2014.03.129.

    Article  Google Scholar 

  • Yu, J., Xi, L., & Zhou, X. (2008). Intelligent monitoring and diagnosis of manufacturing processes using an integrated approach of KBANN and GA. Computers in Industry, 59(5), 489–501. doi:10.1016/j.compind.2007.12.005.

    Article  Google Scholar 

  • Zhang, Y., Zhang, H., & Nasrabadi, N. M. (2013). Multi-metric learning for multi-sensor fusion based classification. Information Fusion, 14(4), 431–440. doi:10.1016/j.inffus.2012.05.002.

    Article  Google Scholar 

  • Zhu, K., Wong, Y. S., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49(7), 537–553. doi:10.1016/j.ijmachtools.2009.02.003.

    Article  Google Scholar 

Download references

Acknowledgments

The research work presented in this paper was primarily supported by the National Natural Science Foundation of China (Ref: 51375239, U1537209), and New Century Excellent Talents Supporting Plan of the Education Ministry (Ref: NCEP-13-0856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y., Zhou, G. et al. A sensor fusion and support vector machine based approach for recognition of complex machining conditions. J Intell Manuf 29, 1739–1752 (2018). https://doi.org/10.1007/s10845-016-1209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1209-y

Keywords

Navigation