Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Near-Threshold Soft Error Resilient 7T SRAM Cell with Low Read Time for 20 nm FinFET Technology

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Shrinking of technology node in advanced VLSI devices and scaling of supply voltage degrade the performance characteristics and reduce the soft error resilience of modern downscaled digital circuits. In this paper, we propose a reliable near-threshold 7T SRAM cell with single ended read and differential write operations based on a previous proposed 5T cell. Our new cell improves read speed without degrading of write speed compared to the recently reported 7T cell. Furthermore, our proposed cell provides high soft error reliability amongst all the SRAM cells mentioned in this paper. We compared the performance and reliability characteristics of 5T, 6T, 8T and previous 7T cells with our new 7T SRAM cell to show its efficacy. The simulations are performed using HSPICE in 20 nm FinFET technology at VDD = 0.5 V. The results show that the new 7T cell has high write speed, read and write margins with improved read speed and low leakage power in the hold “0” state compared to 5T cell. In addition, the study of performance parameters under process and environmental variations considering ageing effect in near-threshold region shows the robustness of the proposed 7T SRAM cell against these variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ahmadimehr AR, Ebrahimi B, Afzali-Kusha A (2009) A high speed subthreshold SRAM cell design. In Proc Asia Symp quality electronic design, pp. 8–13. doi:10.1109/ASQED.2009.5206306

  2. Alorda B, Torrens G, Bota SA, Segura J (2014) Adaptive static and dynamic noise margin improvement in mínimum-sized 6T-SRAM cells. Microelectron Reliab 54:2613–2620. doi:10.1016/j.microrel.2014.05.009

    Article  Google Scholar 

  3. Ansari M, Afzali-Kusha H, Ebrahimi B, Navabia Z, Afzali-Kusha A (2015) A near-threshold 7T SRAM cell with high write and read margins and low write time for sub-20 nm FinFET technologies. Elsevier Journal of Integration the VLSI Journal 50:91–106. doi:10.1016/j.vlsi.2015.02.002

  4. Baumann R (2005) Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans Device Mater Reliab 5(3):305–316. doi:10.1109/TDMR.2005.853449

    Article  Google Scholar 

  5. Bosio A, Dilillo L, Girard P, Pravossoudovitch S, Virazel A (2009) Advanced test methods for SRAMs: effective solutions for dynamic fault detection in Nanoscaled technologies, 1st edn. Springer, New York doi:10.1007/978-1-4419-0938-1

  6. Calhoun BH, Brooks D (2010) Can subthreshold and near-threshold circuits go mainstream? IEEE Micro 30(4):80–85. doi:10.1109/MM.2010.60

    Article  Google Scholar 

  7. Carreno VA, Choi G, Iyer RK (1990) Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system. In NASA Technical Memorandum 4241

  8. Chang L, Fried DM, Hergenrother J, Sleight JW, Dennard RH, Montoye RK, Sekaric L, McNab SJ, Topol AW, Adams CD, Guarini KW, Haensch W (2005) Stable SRAM cell design for the 32 nm node and beyond. In Proc Symp VLSI circuits technology, Dig. Tech. Papers, pp. 128–129. doi:10.1109/.2005.1469239

  9. Chen G, Sylvester D, Blaauw D, Mudge T (2010) Yield driven near-threshold SRAM design. IEEE Trans Large Scale Integr (VLSI) Syst 18(11):1590–1598. doi:10.1109/ICCAD.2007.4397341

    Article  Google Scholar 

  10. Dreslinski RG, Wieckowski M, Blaauw D, Sylvester D, Mudge T (2010) Near-threshold computing: reclaiming Moore’s law through energy integrated circuits. Proc IEEE 98(2):253–266. doi:10.1109/JPROC.2009.2034764

    Article  Google Scholar 

  11. Ebrahimi B, Rostami M, Afzali-Kusha A, Pedram M (2011) Statistical design optimization of FinFET SRAM using back-gate voltage. IEEE Trans Large Scale Integr (VLSI) Syst 19:1911–1916. doi:10.1109/TVLSI.2010.2059054

    Article  Google Scholar 

  12. International Technology Roadmap for Semiconductors (2012) http://www.itrs.net/Links/2012ITRS/Home2012.htm

  13. Khalid U, Mastrandrea A, Olivieri M (2015) Effect of NBTI/PBTI aging and process variations on write failures in MOSFET and FinFET flip-flops. Microelectron Reliab 55(12):2614–2626. doi:10.1016/j.microrel.2015.07.050

    Article  Google Scholar 

  14. Kim CH, Kim J-J, Mukhopadhyay S, Roy K (2005) A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations. IEEE Trans Large Scale Integr (VLSI) Syst 13(3):349–357. doi:10.1145/871506.871511

    Article  Google Scholar 

  15. Kim T-H, Liu J, Kim CH (2007) An 8T subthreshold SRAM cell utilizing reverse short channel effect for write margin and read performance improvement. Proc. IEEE Custom Integr Circuits Conf (CICC), pp. 241–244, doi:10.1109/CICC.2007.4405723

  16. Li Y, Li L, Ma Y, Chen L, Liu R, Wang H, Wu Q, Newton M, Chen M (2016) A 10-transistor 65 nm SRAM cell tolerant to single-event upsets. J Electron Test: Theory and Applications 32:137–145. doi:10.1007/s10836-016-5573-5

  17. Lin S, Kim Y-B, Lombardi F (2010) Design and analysis of a 32 nm PVT tolerant CMOS SRAM cell for low leakage and high stability. Elsevier Journal of Integration the VLSI Journal 43:176–187. doi:10.1016/j.vlsi.2010.01.003

  18. Lu DD, Lin C-H., Yao S, Xiong W, Bauer F, Cleavelin CR, Niknejad AM, Hu C (2009) Design of FinFET SRAM cells using a statistical compact model. In Proc IEEE Int Conf Simulation of Semiconductor Processes and Devices (SISPAD), pp. 1–4. doi:10.1109/SISPAD.2009.5290234

  19. Ma C, Li B, Zhang L, He J, Zhang X, Lin X, Chan M (2009) A unified FinFET reliability model including high K gate stack dynamic threshold voltage, hot carrier injection, and negative bias temperature instability. Proc. Int. Symp. Quality Electronic Design (ISQED), pp. 7–12, doi:10.1109/ISQED.2009.4810262

  20. Mahapatra S, Goel N, Desai S, Gupta S, Jose B, Mukhopadhyay S, Joshi K, Jain A, Islam AE, Alam MA (2013) A comparative study of different physics-based NBTI models. IEEE Trans Electron Devices 60(3):901–916. doi:10.1109/TED.2013.2238237

    Article  Google Scholar 

  21. Makino H, Nakata S, Suzuki H, Mutoh S, Miyama M, Yoshimura T, Iwade S, Matsuda Y (2011) Reexamination of SRAM cell write margin definitions in view of predicting the distribution. IEEE Trans Circuits Syst II Exp Briefs 58:230–234. doi:10.1109/TCSII.2011.2124531

    Article  Google Scholar 

  22. Niaraki Asli R, Shirinzadeh S (2013) High efficiency time redundant hardened latch for reliable circuit design. J Electron Test: Theory and Applications 29:537–544. doi:10.1007/s10836-013-5384-x

  23. Nowroz AN, Reda S (2011) Thermal and power characterization of field programmable gate arrays. In Proc Int Symp Field Programmable Gate Arrays (ISFPGA), pp.111–114, doi:10.1145/1950413.1950437

  24. Omana M, Rossi D, Metra C (2003) Novel transient fault hardened static latch. In Proc. IEEE Int. Test Conf (ITC), pp. 886–892, doi:10.1109/TEST.2003.1271074

  25. Pavlov A, Sachdev M (2008) CMOS SRAM circuit design and parametric test in Nano-scaled technologies: process-aware SRAM design and test. Springer, The Netherlands

    Book  Google Scholar 

  26. Pilo H, Arsovski I, Batson K, Braceras G, Gabric J, Houle R, Lamphier S, Radens C, Seferagic A (2012) A 64 Mb SRAM in 32 nm high-k metal-gate SOI technology with 0.7 V operation enabled by stability, write-ability and read-ability enhancements. IEEE J Solid State Circuits 47(1):97–106. doi:10.1109/ISSCC.2011.5746307

    Article  Google Scholar 

  27. Predictive technology model (2012) http://www.eas.asu.edu/~ptm/

  28. PTM: Predictive technology model (2008) In: nanoscale integration and modeling (NIMO) group. Arizona State University, Arizona. <http://ptm.asu.edu/>. http://ptm.asu.edu/reliability/PTM_NBTI_Beta.pdf

  29. Salahuddin S, Jiao H, Kursun V (2013) A novel 6T SRAM cell with asymmetrically gate underlap engineered FinFETs for enhanced read data stability and write ability. Proc. Int. Symp. Quality Electronic Design (ISQED), pp. 353–358, doi:10.1109/ISQED.2013.6523634

  30. Seevinck E, List FJ, Lohstroh J (1987) Static-noise margin analysis of MOS SRAM cells. IEEE J Solid State Circuits 22:748–754. doi:10.1109/JSSC.1987.1052809

    Article  Google Scholar 

  31. Sinangil ME, Chandrakasan AP (2014) Application-specific SRAM design using output prediction to reduce bit-line switching activity and statistically gated sense amplifiers for up to 1.9 lower energy/access. IEEE J Solid State Circuits 49(1):107–117. doi:10.1109/JSSC.2013.2280310

    Article  Google Scholar 

  32. Sinangil ME, Verma N, Chandrakasan A (2009) A reconfigurable 8T ultra-dynamic voltage scalable (U-DVS) SRAM in 65 nm CMOS. IEEE J Solid State Circuits 44:3163–3173. doi:10.1109/JSSC.2009.2032493

    Article  Google Scholar 

  33. Singh J, Pradhan DK, Mohanty SP (2013) Robust SRAM designs and analysis. Springer, New York, pp. 137–154

  34. Sinha S, Yeric G, Chandra V, Cline B, Cao Y (2012) Exploring sub-20nm FinFET design with predictive technology models. Proc. IEEE Des Autom Conf (DAC), pp. 283–288, doi:10.1145/2228360.2228414

  35. Teman A, Mordakhay A, Mezhibovsky J, Fish A (2012) A 40-nm sub-Threhold 5T SRAM bit cell with improved read and write stability. IEEE Trans Circuits Syst II Exp Briefs 59(12):873–877. doi:10.1109/TCSII.2012.2231020

    Article  Google Scholar 

  36. Verma N, Chandrakasan AP (2008) A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J Solid State Circuits 43(1):141–149. doi:10.1109/JSSC.2007.908005

    Article  Google Scholar 

  37. Villacorta H, Segura J, Champac V (2016) Impact of fin-height on SRAM soft error sensitivity and cell stability. J Electronic Testing: Theory and Applications 32(3):307–314. doi:10.1007/s10836-016-5591-3

  38. Wang A, Calhoun BH, Chandrakasan AP (2006) Sub-threshold Design for Ultra low-Power Systems. Springer, New York, pp. 46–56

    Google Scholar 

  39. Yoo HJ, Kim D (2009) Embedded memory architecture for low-power application processor in embedded memories for Nano-Scale VLSIs. Springer-Verlag, New York, pp. 7–38

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahebeh Niaraki Asli.

Additional information

Responsible Editor: C. A. Papachristou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niaraki Asli, R., Taghipour, S. A Near-Threshold Soft Error Resilient 7T SRAM Cell with Low Read Time for 20 nm FinFET Technology. J Electron Test 33, 449–462 (2017). https://doi.org/10.1007/s10836-017-5659-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-017-5659-8

Keywords

Navigation