Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Molecular dynamics to enhance structure-based virtual screening on cathepsin B

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) and molecular docking are commonly used to study molecular interactions in drug discovery. Most docking approaches consider proteins as rigid, which can decrease the accuracy of predicted docked poses. Therefore MD simulations can be used prior to docking to add flexibility to proteins. We evaluated the contribution of using MD together with docking in a docking study on human cathepsin B, a well-studied protein involved in numerous pathological processes. Using CHARMM biomolecular simulation program and AutoDock Vina molecular docking program, we found, that short MD simulations significantly improved molecular docking. Our results, expressed with the area under the receiver operating characteristic curves, show an increase in discriminatory power i.e. the ability to discriminate active from inactive compounds of molecular docking, when docking is performed to selected snapshots from MD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrett AJ (1981) Cathepsin B, cathepsin H, and cathepsin L. Meth Enzymol 80:535–561

    Article  CAS  Google Scholar 

  2. Hook V, Toneff T, Bogyo M et al (2005) Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer’s disease. Biol Chem 386:1325

    Article  CAS  Google Scholar 

  3. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    Article  CAS  Google Scholar 

  4. Illy C, Quraishi O, Wang J et al (1997) Role of the occluding loop in cathepsin B activity. J Biol Chem 272:1197–1202

    Article  CAS  Google Scholar 

  5. Almeida PC, Nantes IL, Chagas JR et al (2001) Cathepsin B activity regulation heparin-like glycosaminoglycans protect human cathepsin B from alkaline ph-induced inactivation. J Biol Chem 276:944–951

    Article  CAS  Google Scholar 

  6. Mirković B, Renko M, Turk S et al (2011) Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds. ChemMedChem 6:1351–1356

    Article  Google Scholar 

  7. Sosič I, Mirković B, Arenz K et al (2013) Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure–activity relationships of nitroxoline derivatives. J Med Chem 56:521–533

    Article  Google Scholar 

  8. Ripphausen P, Nisius B, Peltason L, Bajorath J (2010) Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem 53:8461–8467

    Article  CAS  Google Scholar 

  9. Sastry GM, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  Google Scholar 

  10. Scior T, Bender A, Tresadern G et al (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881

    Article  CAS  Google Scholar 

  11. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  Google Scholar 

  12. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  Google Scholar 

  13. Nichols SE, Baron R, Ivetac A, McCammon JA (2011) Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 51:1439–1446

    Article  CAS  Google Scholar 

  14. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  15. O’Boyle NM, Morley C, Hutchison GR (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J 2:5

    Article  Google Scholar 

  16. O'Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33

  17. Landrum G (2006) RDKit: open-source cheminformatics. (Online). http://www.rdkit.org. Accessed 03/04/2012

  18. Brooks BR, Brooks CL, MacKerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  19. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  20. Janežič D, Venable RM, Brooks BR (1995) Harmonic analysis of large systems. III. Comparison with molecular dynamics. J Comput Chem 16:1554–1566

    Article  Google Scholar 

  21. Schaftenaar G, Noordik JH (2000) Molden: a pre-and post-processing program for molecular and electronic structures*. J Comput Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

  22. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all atom additive biological force fields. J Comput Chem 31:671–690

    CAS  Google Scholar 

  23. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154

    Article  CAS  Google Scholar 

  24. Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168

    Article  CAS  Google Scholar 

  25. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  26. Karaboga AS, Petronin F, Marchetti G et al (2013) Benchmarking of HPCC: a novel 3D molecular representation combining shape and pharmacophoric descriptors for efficient molecular similarity assessments. J Mol Graph Model 41:20–30

    Article  CAS  Google Scholar 

  27. Borštnik U, Hodošcek M, Janezic D (2004) Improving the performance of molecular dynamics simulations on parallel clusters. J Chem Inf Comput Sci 44:359–364

    Article  Google Scholar 

  28. Congreve M, Carr R, Murray C, Jhoti H (2003) A “rule of three”for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Konc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogrizek, M., Turk, S., Lešnik, S. et al. Molecular dynamics to enhance structure-based virtual screening on cathepsin B. J Comput Aided Mol Des 29, 707–712 (2015). https://doi.org/10.1007/s10822-015-9847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9847-2

Keywords

Navigation