Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Combining molecular dynamics simulation and ligand-receptor contacts analysis as a new approach for pharmacophore modeling: beta-secretase 1 and check point kinase 1 as case studies

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Ligand-based pharmacophore modeling require relatively long lists of active compounds, while a pharmacophore based on a single ligand-receptor crystallographic structure is often promiscuous. These problems prompted us to combine molecular dynamics (MD) simulation with ligand-receptor contacts analysis as means to develop valid pharmacophore model(s). The particular ligand-receptor complex is allowed to perturb over a few nano-seconds using MD simulation. Subsequently, ligand-receptor contact points (≤2.5 Å) are identified. Ligand-receptor contacts maintained above certain threshold during molecular dynamics simulation are considered critical and used to guide pharmacophore development. We termed this method as Molecular-Dynamics Based Ligand-Receptor Contact Analysis. We implemented this new methodology to develop valid pharmacophore models for check point kinase 1 (Chk1) and beta-secretase 1 (BACE1) inhibitors as case studies. The resulting pharmacophore models were validated by receiver operating characteristic curved analysis against inhibitors obtained from CHEMBL database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kumar BV, Kotla R, Buddiga R et al (2011) Ligand-based and structure-based approaches in identifying ideal pharmacophore against c-Jun N-terminal kinase-3. J Mol Model 17:151–163

    Article  CAS  Google Scholar 

  2. Kurogi Y, Güner O (2001) Pharmacophore modeling and three dimensional database searching for drug design using catalyst. Curr Med Chem 8:1035–1055

    Article  CAS  Google Scholar 

  3. Abuhamdah S, Habash M, Taha MO (2013) Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors. J Comput Aided Mol Des 27:1075–1092

    Article  CAS  Google Scholar 

  4. Al-Nadaf AH, Taha MO (2011) Discovery of new renin inhibitory leads via sequential pharmacophore modeling, QSAR analysis, in silico screening and in vitro evaluation. J Mol Graph Model 29:843–864

    Article  CAS  Google Scholar 

  5. Al-Sha’er MA, Vanpatten S, Al-Abed Y, Taha MO (2013) Elaborate ligand-based modeling reveal new migration inhibitory factor inhibitors. J Mol Graph Model 42:104–114

    Article  Google Scholar 

  6. Al-Sha’er MA, Khanfar MA, Taha MO (2014) Discovery of novel urokinase plasminogen activator (uPA) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. J Mol Model 20:2080–2084

    Article  Google Scholar 

  7. Habash M, Abdelazeem AH, Taha MO (2014) Elaborate ligand-based modeling reveals new human neutrophil elastase inhibitors. Med Chem Res 23:3876–3896

    Article  CAS  Google Scholar 

  8. Khanfar MA, Abukhader MM, Alqtaishat S, Taha MO (2013) Pharmacophore modeling, homology modeling, and in silico screening reveal mammalian target of rapamycin inhibitory activities for sotalol, glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone. J Mol Graph Model 42:39–49

    Article  CAS  Google Scholar 

  9. Shahin R, Taha MO (2012) Elaborate ligand-based modeling and subsequent synthetic exploration unveil new nanomolar Ca2+/calmodulin-dependent protein kinase II inhibitory leads. Bioorg Med Chem 20:377–400

    Article  CAS  Google Scholar 

  10. Shahin R, Alqtaishat S, Taha MO (2012) Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors. J Comput Aided Mol Des 26:249–266

    Article  CAS  Google Scholar 

  11. Taha MO, Qandil AM, Al-Haraznah T et al (2011) Discovery of new antifungal leads via pharmacophore modeling and QSAR analysis of fungal N-myristoyl transferase inhibitors followed by in silico screening. Chem Biol Drug Des 78:391–407

    Article  CAS  Google Scholar 

  12. Taha MO, Habash M, Hatmal MM, Abdelazeem AH, Qandil A (2014) Ligand-based modeling followed by in vitro bioassay yielded new potent glucokinase activators. J Mol Graph Model 56:91–102

    Article  Google Scholar 

  13. Morris GM, Olson AJ, Goodsell DS (2000) Protein-ligand docking methods. Princ Med Chem 8:31–48

    Article  CAS  Google Scholar 

  14. Taha MO, Bustanji Y, Al-Bakri AG et al (2007) Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening. J Mol Graph Model 25:870–884

    Article  CAS  Google Scholar 

  15. Taha MO, Al-Bakri AG, Zalloum WA (2006) Discovery of potent inhibitors of pseudomonal quorum sensing via pharmacophore modeling and in silico screening. Bioorg Med Chem Lett 16(22):5902–5906

    Article  CAS  Google Scholar 

  16. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Article  CAS  Google Scholar 

  17. Beier C, Zacharias M (2010) Tackling the challenges posed by target flexibility in drug design. Expert Opin Drug Discov 5:347–359

    Article  CAS  Google Scholar 

  18. Langer T, Hoffmann RD (2006) Pharmacophore modelling: applications in drug discovery. Expert Opin Drug Discov 1:261–267

    Article  CAS  Google Scholar 

  19. Al-Sha’er MA, Taha MO (2012) Application of docking-based comparative intermolecular contacts analysis for validating Hsp90α docking studies and subsequent in silico screening for inhibitors. J Mol Model 18:4843–4863

    Article  Google Scholar 

  20. Taha MO, Habash M, Al-Hadidi Z et al (2011) Docking-based comparative intermolecular contacts analysis as new 3D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J Chem Inf Model 51:647–669

    Article  CAS  Google Scholar 

  21. Taha MO, Habash M, Khanfar MA (2014) The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators. J Comput Aided Mol Des 28:509–547

    Article  CAS  Google Scholar 

  22. Sanders MPA, McGuire R, Roumen L et al (2012) From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling. Med Chem Commun 3:28–38

    Article  CAS  Google Scholar 

  23. Triballeau N, Bertrand HO, Acher F (2006) Methods and principles in medicinal chemistry-pharmacophores and pharmacophore searches. In: Langer T, Hoffmann RD (eds) Are you sure you have a good model? Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  24. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem (Int Ed) 48:1198–1229

    Article  CAS  Google Scholar 

  25. Troyer JM, Cohen FE (2015) Protein conformational landscapes: energy minimization and clustering of a long molecular dynamics trajectory. Proteins 23:97–110

    Article  Google Scholar 

  26. Mauricio GSC, Batista PR, Bisch PM, Perahia D (2015) Exploring free energy landscapes of large conformational changes: molecular dynamics with excited normal modes. J Chem Theory Comput 11:2755–2767

    Article  Google Scholar 

  27. Eun C, Ortiz-Sánchez JM, Da L et al (2014) Molecular dynamics simulation study of conformational changes of transcription factor TFIIS during RNA polymerase II transcriptional arrest and reactivation. PLoS One 9:e97975

    Article  Google Scholar 

  28. Den Otter WK, Briels WJ (1997) Molecular dynamics simulations of free energy and conformational transition rates of calix[4]arene in chloroform. J Chem Phys 107:4968

    Article  Google Scholar 

  29. Aykut AO, Atilgan AR, Atilgan C (2013) designing molecular dynamics simulations to shift populations of the conformational states of calmodulin. PLoS Comput Biol 9:e1003366

    Article  Google Scholar 

  30. Pinto M, Perez JJ, Rubio-Martinez JJ (2004) Molecular dynamics study of peptide segments of the BH3 domain of the proapoptotic proteins Bak, Bax, Bid and Hrk bound to the Bcl-xL and Bcl-2 proteins. Comput Aided Mol Des 18:13–22

    Article  CAS  Google Scholar 

  31. Heather A, Carlson HA, Masukawa KM et al (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114

    Article  Google Scholar 

  32. Kumar SP, Jasrai YT, Mehta VP, Pandya HA (2015) Development of pharmacophore similarity-based quantitative activity hypothesis and its applicability domain: applied on a diverse data-set of HIV-1 integrase inhibitors. J Biomol Struct Dyn 33:706–722

    Article  CAS  Google Scholar 

  33. Spyrakis F, Benedetti P, Decherchi S et al (2015) A pipeline to enhance ligand virtual screening: integrating molecular dynamics and FLAP. J Chem Inf Model 55:2256–2274

    Article  CAS  Google Scholar 

  34. Cross S, Ortuso F, Baroni M et al (2012) GRID-based three-dimensional pharmacophores II: PharmBench, a benchmark data set for evaluating pharmacophore elucidation methods. J Chem Inf Model 52:2599–2608

    Article  CAS  Google Scholar 

  35. Shirgahi Talari F, Bagherzadeh K, Golestanian S et al (2015) Potent human telomerase inhibitors: molecular dynamic simulations, multiplepharmacophore-based virtual screening, and biochemical assays. J Chem Inf Model 55:2596–2610

    Article  CAS  Google Scholar 

  36. Lai B, Nagy G, Garate JA, Oostenbrink C (2014) Entropic and enthalpic contributions to stereospecific ligand binding from enhanced sampling methods. J Chem Inf Model 54:151–158

    Article  CAS  Google Scholar 

  37. Rühmann E, Betz M, Heine A, Klebe G (2014) Fragment binding can be either more enthalpy-driven or entropy-driven: crystal structures and residual hydration patterns suggest why. J Med Chem 58:6960–6971

    Article  Google Scholar 

  38. Chini CC, Chen J (2004) Claspin, a regulator of Chk1 in DNA replication stress pathway. DNA Repair (Amst) 3:1033–1037

    Article  CAS  Google Scholar 

  39. Willem M, Garratt AN, Novak B et al (2006) Control of peripheral nerve myelination by the beta-secretase BACE1. Science 314:664–666

    Article  CAS  Google Scholar 

  40. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  41. Triballeau N, Acher F, Brabet I et al (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534–2547

    Article  CAS  Google Scholar 

  42. Kirchmair J, Distinto D, Schuster D et al (2008) Enhancing drug discovery through in silico screening: strategies to increase true positives retrieval rates. Curr Med Chem 15:2040–2053

    Article  CAS  Google Scholar 

  43. Kirchmair J, Markt P, Distinto S et al (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—what can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228

    Article  CAS  Google Scholar 

  44. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:1100–1107

    Article  Google Scholar 

  45. Wieder M, Perricone U, Boresch S, Seidel T, Langer T (2016) Evaluating the stability of pharmacophore features using molecular dynamic simulations. Biochem Biophys Res Commun 470:685–689

    Article  CAS  Google Scholar 

  46. Choudhury C, Priyakumar UD, Sastry GN (2015) Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase. J Chem Inf Model 55:848–860

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank IMAN1 Center—Jordan’s National Supercomputing Center—for providing us with the computational tools and high-performance computing system time to perform our experiments; the authors are deeply indebted to Eng. Zaid Abudayyeh from IMAN1 Center for his help in performing this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutasem O. Taha.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatmal, M.M., Jaber, S. & Taha, M.O. Combining molecular dynamics simulation and ligand-receptor contacts analysis as a new approach for pharmacophore modeling: beta-secretase 1 and check point kinase 1 as case studies. J Comput Aided Mol Des 30, 1149–1163 (2016). https://doi.org/10.1007/s10822-016-9984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9984-2

Keywords

Navigation