Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Free radical and superoxide reactivity detection in semen quality assessment: past, present, and future

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Oxidative stress is a well-established cause of male infertility, with reactive oxygen species (ROS) impairing sperm production, motility, membrane, and DNA integrity. Currently, most clinics do not test infertile patients for the imbalance between ROS generation and the ability of the antioxidants to scavenge them, although there is a clear need for andrology laboratories to be able to identify and/or quantify seminal oxidative stress. As such there is a clinical urgency for an inexpensive and easy-to-perform assay able to identify oxidative stress in semen. The aim of this review is to provide information on the currently available methods to assess and quantify ROS and particularly superoxide in male reproductive cells, tissues, and fluids which may have a significant clinical utility in identifying men with impaired fertility associated with oxidative stress. Through a deeper understanding of oxidative stress and its assessment options, clinical andrology labs may better assist patients to achieve increased rates of fertility and pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993;215:213–9.

    Article  CAS  PubMed  Google Scholar 

  2. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134:707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chance B, Sies H, Boveris H. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    CAS  PubMed  Google Scholar 

  4. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129:357–67.

    CAS  PubMed  Google Scholar 

  5. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–5.

    Article  CAS  PubMed  Google Scholar 

  6. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl. 1992;13:368–78.

    CAS  PubMed  Google Scholar 

  7. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14:243–58.

    Article  CAS  PubMed  Google Scholar 

  8. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43:963–74.

    CAS  PubMed  Google Scholar 

  9. Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol. 1999;24:249–66.

    Article  CAS  PubMed  Google Scholar 

  10. Aitken RJ, Irvine DS, Wu FC. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol. 1991;164:542–51.

    Article  CAS  PubMed  Google Scholar 

  11. de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14:157–66.

    Article  CAS  PubMed  Google Scholar 

  12. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2:48–54.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez R, Sepulveda C, Risopatron J. Human sperm chemotaxis depends on critical levels of reactive oxygen species. Fertil Steril. 2010;93:150–3.

    Article  CAS  PubMed  Google Scholar 

  14. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41:183–97.

    Article  CAS  PubMed  Google Scholar 

  15. Whittington K, Ford WCL. The effect of incubation periods under 95% oxygen on the stimulated acrosome reaction and motility of human spermatozoa. Mol Hum Reprod. 1998;4:1053–7.

    Article  CAS  PubMed  Google Scholar 

  16. Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59:1037–46.

    Article  CAS  PubMed  Google Scholar 

  17. Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Gips H, Schill WB, Kruger TF. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    Article  CAS  PubMed  Google Scholar 

  18. Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26:279–85.

    Article  CAS  PubMed  Google Scholar 

  19. Ozmen B, Koutlaki N, Youssry M, Diedrich K, Al-Hasani S. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod BioMed Online. 2007;14:384–95.

    Article  CAS  PubMed  Google Scholar 

  20. Tvrdá E, Kňažická Z, Bárdos L, Massányi P, Lukáč N. Impact of oxidative stress on male fertility—a review. Acta Vet Hung. 2011;59:465–84.

    Article  PubMed  CAS  Google Scholar 

  21. Henkel R, Hoogendijk CF, Bouic PJ, Kruger TF. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia. 2010;42:305–13.

    Article  PubMed  Google Scholar 

  22. Tunc O, Thompson J, Tremellen K. Development of the NBT assay as a marker of sperm oxidative stress. Int J Androl. 2010;33:13–21.

    Article  CAS  PubMed  Google Scholar 

  23. McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem. 1968;243:5753–60.

    CAS  PubMed  Google Scholar 

  24. McCord JM, Keele Jr BB, Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    CAS  PubMed  Google Scholar 

  25. McCord JM, Keele Jr BB, Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A. 1971;68:1024–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Asp Med. 2011;32:234–46.

    Article  CAS  Google Scholar 

  27. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20:61–9.

    Article  CAS  PubMed  Google Scholar 

  28. Caldwell K, Blake ET, Sensabaugh GF. Sperm diaphorase: genetic polymorphism and a sperm-specific enzyme in man. Science. 1976;191:1185–7.

    Article  CAS  PubMed  Google Scholar 

  29. Gavella M, Lipovac V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl. 1992;28:135–41.

    Article  CAS  PubMed  Google Scholar 

  30. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191:421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koppers AJ, De Iuliis GN, Finnie JM. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93:3199–207.

    Article  CAS  PubMed  Google Scholar 

  32. Halliwell B. Free radicals and other reactive species in disease. Encyclopedia Life Sci. 2005; doi:10.1038/npg.els.0003913.

    Google Scholar 

  33. Aitken RJ. Molecular mechanisms regulating human sperm function. Mol Hum Reprod. 1997;3:169–73.

    Article  CAS  PubMed  Google Scholar 

  34. Cantoni O, Palomba L, Guidarelli A. Cell signaling and cytotoxicity by peroxynitrite. Environ Health Perspect. 2002;110:823–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Du Plessis SS, Agarwal A, Halabi J, Tvrda E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet. 2015;32:509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Agarwal A, Mulgund A, Sharma R, Sabanegh E. Mechanisms of oligozoospermia: an oxidative stress perspective. Syst Biol Reprod Med. 2014a;60:206–16.

    Article  PubMed  Google Scholar 

  37. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014b;12:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ko EY, Sabanegh Jr ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102:1518–27.

    Article  CAS  PubMed  Google Scholar 

  39. Agarwal A, Cocuzza M, Abdelrazik H, Sharma RK. Oxidative stress measurement in patients with male or female factor infertility. In: Popov I, Smith J, editors. Handbook of chemiluminescent methods in oxidative stress assessment. Kerala: Transworld Research Network; 2008. p. 195–218.

    Google Scholar 

  40. Benjamin D, Sharma RK, Moazzam A, Agarwal A. Methods for the detection of ROS in human sperm samples. In: Agarwal A, Aitken RJ, Alvarez JG, editors. Studies on men’s health and fertility, oxidative stress in applied basic research and clinical practice. New York: Springer Science+Business Media, LLC; 2012. p. 257–73.

    Google Scholar 

  41. Khan P, Idrees D, Moxlez MA, Corbett JA, Ahmad F, von Figura G, Sly WS, Waheed A, Hassan MI. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotechnol. 2014;173:333–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol. 1992;151:466–77.

    Article  CAS  PubMed  Google Scholar 

  43. Agarwal A, Allamaneni SS, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod BioMed Online. 2004;9(4):466–8.

    Article  CAS  PubMed  Google Scholar 

  44. Williams AC, Ford WC. Relationship between reactive oxygen species production and lipid peroxidation in human sperm suspensions and their association with sperm function. Fertil Steril. 2005;83:929–36.

    Article  CAS  PubMed  Google Scholar 

  45. Athayde KS, Cocuzza M, Agarwal A, Krajcir N, Lucon AM, Srougi M, Hallak J. Development of normal reference values for seminal reactive oxygen species and their correlation with leukocytes and semen parameters in a fertile population. J Androl. 2007;28:613–20.

    Article  CAS  PubMed  Google Scholar 

  46. Kashou AH, Sharma R, Agarwal A. Assessment of oxidative stress in sperm and semen. Methods Mol Biol. 2013;927:351–61.

    Article  CAS  PubMed  Google Scholar 

  47. Mahfouz RZ, du Plessis SS, Aziz N, Sharma R, Sabanegh E, Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril. 2010;93:814–21.

    Article  CAS  PubMed  Google Scholar 

  48. Agarwal A, Mulgund A, Alshahrani S, Assidi M, Abuzenadah AM, Sharma R, Sabanegh E. Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod Biol Endocrinol. 2014;12:126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Aitken RJ, De Iuliis GN, Baker MA. Direct methods for the detection of reactive oxygen species in human semen samples. In: Agarwal A, Aitken RJ, Alvarez JG, editors. Studies on men’s health and fertility, oxidative stress in applied basic research and clinical practice. New York: Springer Science+Business Media, LLC; 2012. p. 275–99.

    Google Scholar 

  50. Kobayashi H, Gil-Guzman E, Mahran AM. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl. 2001;22:568–74.

    CAS  PubMed  Google Scholar 

  51. Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Schill WB, Kruger TF. DNA fragmentation of spermatozoa and assisted reproduction technology. RBM Online. 2003;7:44–51.

    Google Scholar 

  52. Rothe G, Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′, 7′–dichloroflourescein. J Leukoc Biol. 1990;47:440–8.

    CAS  PubMed  Google Scholar 

  53. Zielonka J, Vasquez-Vivar J, Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat Prot. 2008;3(1):8–21.

    Article  CAS  Google Scholar 

  54. De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocrinol Metab. 2006;91:1968–75.

    Article  CAS  PubMed  Google Scholar 

  55. Mupfiga C, Fisher D, Kruger T, Henkel R. The relationship between seminal leukocytes, oxidative status in the ejaculate, and apoptotic markers in human spermatozoa. Syst Biol Reprod Med. 2013;59:304–11.

    Article  CAS  PubMed  Google Scholar 

  56. Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol. 2003;65:1575–82.

    Article  CAS  PubMed  Google Scholar 

  57. Mahfouz RZ, Sharma RK, Said TM. Association of sperm apoptosis and DNA ploidy with sperm chromatin quality in human spermatozoa. Fertil Steril. 2009;91:1110–8.

    Article  PubMed  Google Scholar 

  58. Kundu K, Knight SF, Willet N, Lee S, Taylor R, Murthy N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed. 2009;48:299–303.

    Article  CAS  Google Scholar 

  59. White D, Weerachatyanukul W, Gadella B, Kamolvarin N, Attar M, Tanphaichitr N. Role of sperm sulfogalactosylglycerolipid in mouse sperm-zona pellucida binding. Biol Reprod. 2000;63:147–55.

    Article  CAS  PubMed  Google Scholar 

  60. Marques M, Sousa AP, Paiva A, Almeida-Santos T, Ramalho-Santos J. Low amounts of mitochondrial reactive oxygen species define human sperm quality. Reproduction. 2014;147(6):817–24.

    Article  CAS  PubMed  Google Scholar 

  61. Treulen F, Uribe P, Boguen R, Villegas JV. Mitochondrial permeability transition increases reactive oxygen species production and induces DNA fragmentation in human spermatozoa. Hum Reprod. 2015;30:767–76.

    Article  PubMed  Google Scholar 

  62. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93:3199–207.

    Article  CAS  PubMed  Google Scholar 

  63. Baehner RL, Boxer LA, Davis J. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood. 1976;48:309–13.

    CAS  PubMed  Google Scholar 

  64. Armstrong JS, Bivalacqua TJ, Chamulitrat W, Sikka S, Hellstrom WJ. A comparison of the NADPH oxidase in human sperm and white blood cells. Int J Androl. 2002;25:223–9.

    Article  CAS  PubMed  Google Scholar 

  65. Esfandiari N, Sharma RK, Saleh RA, Thomas Jr AJ, Agarwal A. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24:862–70.

    Article  CAS  PubMed  Google Scholar 

  66. Rook GA, Steele J, Umar S, Dockrell HM. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by gamma-interferon. J Immunol Methods. 1985;82:161–7.

    Article  CAS  PubMed  Google Scholar 

  67. Choi HS, Kim JW, Cha YN, Kim C. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoassay Immunochem. 2006;27:31–4.

    Article  CAS  PubMed  Google Scholar 

  68. Amarasekara DS, Wijerathna S, Fernando C, Udagama PV. Cost-effective diagnosis of male oxidative stress using the nitroblue tetrazolium test: useful application for the developing world. Andrologia. 2014;46:73–9.

    Article  CAS  PubMed  Google Scholar 

  69. Keshtgar S, Forootan JF, Ghani E, Iravanpoor F. Effectiveness of NBT test in evaluation of ROS generation by human sperm. Paper presented at the 1st International congress on reproductive ethics and 3rd National congress on ethics and modern methods of infertility treatment, Jahrom Iran, 18–20 Dec 2013.

  70. Mahfouz R, Sharma R, Lackner J, Aziz N, Agarwal A. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil Steril. 2009;92:819–27.

    Article  CAS  PubMed  Google Scholar 

  71. Aitken RJ, Smith TB, Lord T, Kuczera L, Koppers AJ, Naumovski N, Connaughton H, Baker MA, De Iuliis GN. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology. 2013;1:192–205.

    Article  CAS  PubMed  Google Scholar 

  72. Muller CH, Lee TKY, Montaño MAM. Improved chemiluminescence assay for measuring antioxidant capacity of seminal plasma. In: Carrell DT, Aston KI, editors. Spermatogenesis. Methods and protocols. New York: Springer Science+Business Media, LLC; 2013. p. 363–78.

    Chapter  Google Scholar 

  73. Glazer AN. Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol. 1990;186:161–8.

    Article  CAS  PubMed  Google Scholar 

  74. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6.

    Article  CAS  PubMed  Google Scholar 

  75. Wayner DD, Burton GW, Ingold KU, Locke S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett. 1985;187:33–7.

    Article  CAS  PubMed  Google Scholar 

  76. Cao G, Verdon CP, Wu AH, Wang H, Prior RL. Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem. 1995;41:1738–44.

    CAS  PubMed  Google Scholar 

  77. Mancini A, Milardi D, Bianchi A. Increased total antioxidant capacity in seminal plasma of varicocele patients: a multivariate analysis. Arch Androl. 2007;53:37–42.

    Article  CAS  PubMed  Google Scholar 

  78. Said TM, Kattal N, Sharma RK, Sikka SC, Thomas Jr AJ, Mascha E, Agarwal A. Enhanced chemiluminescence assay vs colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl. 2003;24:676–80.

    Article  CAS  PubMed  Google Scholar 

  79. Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem. 1997;272(30):18515–7.

    Article  CAS  PubMed  Google Scholar 

  80. Beers Jr RF, Sizer IW. A spectrophotometric method for measuring thebreakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195:133–40.

    CAS  PubMed  Google Scholar 

  81. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–69.

    CAS  PubMed  Google Scholar 

  82. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1957;82:70–7.

    Article  Google Scholar 

  83. Wheeler CR, Salzman JA, Elsayed NM. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem. 1990;184:193–9.

    Article  CAS  PubMed  Google Scholar 

  84. Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–57.

    Article  CAS  PubMed  Google Scholar 

  85. Jiang ZY, Hunt JV, Wolf SP. Detection of lipid hydroperoxides using fox method. Anal Biochem. 1992;202:384–9.

    Article  CAS  PubMed  Google Scholar 

  86. Tvrdá E, Tušimová E, Kováčik A, Paál D, Greifová H, Abdramanov A, Lukáč N. Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Anim Reprod Sci. 2016;172:10–20.

    Article  PubMed  CAS  Google Scholar 

  87. Rossner Jr P, Sram RJ. Immunochemical detection of oxidatively damaged DNA. Free Radic Res. 2012;46:492–522.

    Article  CAS  PubMed  Google Scholar 

  88. Practice Committee of American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril. 2012;98:294–301.

    Article  Google Scholar 

  89. Jarow J, Sigman M, Kolettis PN, Lipshultz LR, McClure RD, Nangia AK, Naughton CK, Prins GS, Sandlow JI, Schlegel PN. The optimal evaluation of the infertile male: AUA best practice statement. Linthicum: American Urological Association, Inc.; 2010. p. 39.

    Google Scholar 

  90. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678–90.

    Article  PubMed  CAS  Google Scholar 

  91. Mostafa T, Rashed LA, Osman I, Marawan M. Seminal plasma oxytocin and oxidative stress levels in infertile men with varicocele. Andrologia. 2015;47:209–13.

    Article  CAS  PubMed  Google Scholar 

  92. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93.

    Article  CAS  PubMed  Google Scholar 

  93. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10:26–37.

    Article  CAS  PubMed  Google Scholar 

  94. Garg H, Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J Androl. 2016;18:222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mayorga-Torres BJ, Camargo M, Cadavid ÁP, du Plessis SS, Cardona Maya WD. Are oxidative stress markers associated with unexplained male infertility? Andrologia. 2016; doi:10.1111/and.12659.

    PubMed  Google Scholar 

  96. Khalil AA, Hussien HM, Sarhan EM. Oxidative stress induces idiopathic infertility in Egyptian males. Afr J Biotechnol. 2012;11:1516–22.

    CAS  Google Scholar 

  97. Saalu LC. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci. 2010;13:413–22.

    Article  CAS  PubMed  Google Scholar 

  98. Agarwal A, Sekhon LH. Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: is it justified? Indian J Urol. 2011;27:74–85.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JA. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86:503–12.

    Article  CAS  PubMed  Google Scholar 

  100. Yelumalai S, Kashir J, Jones C, Bagheri H, Oo SL, McLaren L, Coward K. Clinician-induced (iatrogenic) damage incurred during human infertility treatment: detrimental effects of sperm selection methods and cryopreservation upon the viability, DNA integrity, and function of human sperm. Asian Pac J Reprod. 2012;1:69–75.

    Article  Google Scholar 

  101. Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet. 2009;26:427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Meseguer M, Martínez-Conejero JA, O'Connor JE, Pellicer A, Remohí J, Garrido N. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008;89:1191–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Tvrda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was supported by the Spanish Ministry of Economy and Competitiveness, MINECO (BFU-2013-44,290-R) and by the Slovak Research and Development Agency Grant no APVV-15-0544.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosalvez, J., Tvrda, E. & Agarwal, A. Free radical and superoxide reactivity detection in semen quality assessment: past, present, and future. J Assist Reprod Genet 34, 697–707 (2017). https://doi.org/10.1007/s10815-017-0912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0912-8

Keywords

Navigation