Nothing Special   »   [go: up one dir, main page]

Skip to main content

Assessment of Seminal Oxidative Stress

  • Chapter
  • First Online:
Human Semen Analysis

Abstract

The oxidative stress (OS) paradigm, an imbalance instigated by an excess of reactive oxygen species (ROS) generation, superseding the scavenging capacity of the antioxidant defense system, has been identified as a foundational element in innumerable pathophysiological phenomena. This chapter delves into the salient role of OS in the pathogenesis of male infertility and highlights the potential role of seminal OS assessment in the management of infertile men. Under physiological homeostasis, ROS are instrumental in various cellular processes, from mediating signal transduction to facilitating sperm capacitation. Pathophysiological deviation, however, ensues when an unregulated ROS cascade exceeds antioxidant mechanisms, instigating OS. The consequent ramifications include male oxidative stress infertility, typified by lipid, protein, and nucleic acid oxidative damage. OS is known to cast a pathogenic shadow over seminal parameters, as evidenced by a demonstrable association between exacerbated OS and an amplified presence of seminal leucocytes and sperm DNA fragmentation, significantly undermining spermatozoal fertilizing potential. This reverberation of seminal OS poses substantial implications for assisted reproductive technologies (ARTs). This manifestation is observed as reduced fertilization rates and diminished embryo quality, thereby accentuating the significance of seminal OS assessment in male infertility and ART prognoses. The chapter also discusses the conventional and advanced diagnostic methodologies for ROS assessment in the male reproductive environment, encompassing chemiluminescence assays, flow cytometry, and oxidation–reduction potential assays. These diagnostic resources constitute an essential prerequisite for devising therapeutic strategies targeting OS attenuation, thereby paving the way for an era of augmented reproductive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal A, Sengupta P. Oxidative stress and its association with male infertility. In: Male infertility: contemporary clinical approaches, andrology, ART and antioxidants. Cham: Springer; 2020. p. 57–68.

    Chapter  Google Scholar 

  2. Saleh RA. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23(6):737–52.

    Article  CAS  PubMed  Google Scholar 

  3. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    CAS  PubMed  Google Scholar 

  4. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):1–9.

    Article  Google Scholar 

  5. Agarwal A, Leisegang K, Sengupta P. Oxidative stress in pathologies of male reproductive disorders. In: Pathology. Amsterdam: Elsevier; 2020. p. 15–27.

    Chapter  Google Scholar 

  6. Dutta S, Henkel R, Sengupta P, Agarwal A. Physiological role of ROS in sperm function. In: Male infertility: contemporary clinical approaches, andrology, ART and antioxidants. Cham: Springer; 2020. p. 337–45.

    Chapter  Google Scholar 

  7. World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2021.

    Google Scholar 

  8. Agarwal A, Virk G, Ong C, Du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Izuka E, Menuba I, Sengupta P, Dutta S, Nwagha U. Antioxidants, anti-inflammatory drugs and antibiotics in the treatment of reproductive tract infections and their association with male infertility. Chem Biol Lett. 2020;7(2):156–65.

    CAS  Google Scholar 

  10. Agarwal A, Majzoub A, Baskaran S, Selvam MKP, Cho CL, Henkel R, et al. Sperm DNA fragmentation: a new guideline for clinicians. World J Mens Health. 2020;38(4):412.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, et al. Microtubular dysfunction and male infertility. World J Mens Health. 2020;38(1):9–23.

    Article  PubMed  Google Scholar 

  12. Sengupta P, Arafa M, Elbardisi H. Hormonal regulation of spermatogenesis. In: Molecular signaling in spermatogenesis and male infertility. CRC Press: Boca Raton; 2019. p. 41–9.

    Chapter  Google Scholar 

  13. Agarwal A, Finelli R, Durairajanayagam D, Leisegang K, Henkel R, Salvio G, et al. Comprehensive analysis of global research on human varicocele: a scientometric approach. World J Mens Health. 2022;40(4):636.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Panner Selvam MK, Sengupta P, Agarwal A. Sperm DNA fragmentation and male infertility. In: Genetics of male infertility: a case-based guide for clinicians. Cham: Springer; 2020. p. 155–72.

    Chapter  Google Scholar 

  15. Sengupta P, Durairajanayagam D, Agarwal A. Fuel/energy sources of spermatozoa. In: Male infertility: contemporary clinical approaches, andrology, ART and antioxidants. Cham: Springer; 2020. p. 323–35.

    Chapter  Google Scholar 

  16. Agarwal A, Finelli R, Selvam MKP, Leisegang K, Majzoub A, Tadros N, et al. A global survey of reproductive specialists to determine the clinical utility of oxidative stress testing and antioxidant use in male infertility. World J Mens Health. 2021;39(3):470.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andrade-Rocha FT. Ureaplasma urealyticum and Mycoplasma hominis in men attending for routine semen analysis. Urol Int. 2003;71(4):377–81.

    Article  PubMed  Google Scholar 

  18. Taylor-Robinson D. Infections due to species of mycoplasma and ureaplasma: an update. Clin Infect Dis. 1996;23:671–82.

    Article  CAS  PubMed  Google Scholar 

  19. Zorn B, Virant-klun I, Vidmar G, Sešek-Briški A, Kolbezen M, Meden-vrtovec H. Seminal elastase-inhibitor complex, a marker of genital tract inflammation, and negative IVF outcome measures: role for a silent inflammation? Int J Androl. 2004;27(6):368–74.

    Article  CAS  PubMed  Google Scholar 

  20. Rowe P, Comhaire F, Hargreave T, Mahmoud A. Objective criteria for diagnostic categories in the standardized management of male infertility: male accessory gland infection (MAGI). In: WHO manual for the standardized investigation, diagnosis and management of the infertile male. Geneva: World Health Organization; 2000. p. 52–4.

    Google Scholar 

  21. Dutta S, Sengupta P, Slama P, Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int J Mol Sci. 2021;22(18):10043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function: a systematic review on evaluation and management. Arab J Urol. 2019;17(2):87–97.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sengupta P. Current trends of male reproductive health disorders and the changing semen quality. Int J Prev Med. 2014;5(1):1.

    PubMed  PubMed Central  Google Scholar 

  24. Wallach EE, Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63(6):1143–57.

    Article  Google Scholar 

  25. Ford W, Whittington K, Williams A. Reactive oxygen species in human sperm suspensions: production by leukocytes and the generation of NADPH to protect sperm against their effects. Int J Androl. 1997;20:44–9.

    CAS  PubMed  Google Scholar 

  26. Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62(2):387–93.

    Article  CAS  PubMed  Google Scholar 

  27. Irez T, Bicer S, Sahin S, Dutta S, Sengupta P. Cytokines and adipokines in the regulation of spermatogenesis and semen quality. Chem Biol Lett. 2020;7(2):131–9.

    CAS  Google Scholar 

  28. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995;18(3):487–95.

    Article  PubMed  Google Scholar 

  29. World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2010.

    Google Scholar 

  30. Sharma RK, Pasqualotto FF, Nelson DR, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.

    Article  CAS  PubMed  Google Scholar 

  31. Punab M, Lõivukene K, Kermes K, Mändar R. The limit of leucocytospermia from the microbiological viewpoint. Andrologia. 2003;35(5):271–8.

    Article  PubMed  Google Scholar 

  32. Yanushpolsky EH, Politch JA, Hill JA, Anderson DJ. Is leukocytospermia clinically relevant? Fertil Steril. 1996;66(5):822–5.

    Article  CAS  PubMed  Google Scholar 

  33. Kaleli S, Öçer F, Irez T, Budak E, Aksu MF. Does leukocytospermia associate with poor semen parameters and sperm functions in male infertility? The role of different seminal leukocyte concentrations. Eur J Obstet Gynecol Reprod Biol. 2000;89(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  34. Barraud-Lange V, Pont J-C, Ziyyat A, Pocate K, Sifer C, Cedrin-Durnerin I, et al. Seminal leukocytes are good Samaritans for spermatozoa. Fertil Steril. 2011;96(6):1315–9.

    Article  PubMed  Google Scholar 

  35. Sandoval JS, Raburn D, Muasher S. Leukocytospermia: overview of diagnosis, implications, and management of a controversial finding. Middle East Fertil Soc J. 2013;18(3):129–34.

    Article  Google Scholar 

  36. Fraczek M, Hryhorowicz M, Gill K, Zarzycka M, Gaczarzewicz D, Jedrzejczak P, et al. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J Reprod Immunol. 2016;118:18–27.

    Article  CAS  PubMed  Google Scholar 

  37. Dohle G, Colpi G, Hargreave T, Papp G, Jungwirth A, Weidner W, et al. EAU guidelines on male infertility. Eur Urol. 2005;48(5):703–11.

    Article  CAS  PubMed  Google Scholar 

  38. Lackner JE, Herwig R, Schmidbauer J, Schatzl G, Kratzik C, Marberger M. Correlation of leukocytospermia with clinical infection and the positive effect of antiinflammatory treatment on semen quality. Fertil Steril. 2006;86(3):601–5.

    Article  PubMed  Google Scholar 

  39. Cavagna M, Oliveira JBA, Petersen CG, Mauri AL, Silva LF, Massaro FC, et al. The influence of leukocytospermia on the outcomes of assisted reproductive technology. Reprod Biol Endocrinol. 2012;10(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ricci G, Granzotto M, Luppi S, Giolo E, Martinelli M, Zito G, et al. Effect of seminal leukocytes on in vitro fertilization and intracytoplasmic sperm injection outcomes. Fertil Steril. 2015;104(1):87–93.

    Article  PubMed  Google Scholar 

  41. Moretti E, Capitani S, Figura N, Pammolli A, Federico MG, Giannerini V, et al. The presence of bacteria species in semen and sperm quality. J Assist Reprod Genet. 2009;26(1):47.

    Article  PubMed  Google Scholar 

  42. Martínez P, Proverbio F, Camejo MI. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian J Androl. 2007;9(1):102–7.

    Article  PubMed  Google Scholar 

  43. Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16(1):10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem Toxicol. 2013;36(3):353–68.

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal A, Majzoub A, Parekh N, Henkel R. A schematic overview of the current status of male infertility practice. World J Mens Health. 2020;38(3):308.

    Article  PubMed  Google Scholar 

  46. Agarwal A, Parekh N, Selvam MKP, Henkel R, Shah R, Homa ST, et al. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health. 2019;37(3):296–312.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arafa M, Agarwal A, Majzoub A, Panner Selvam MK, Baskaran S, Henkel R, et al. Efficacy of antioxidant supplementation on conventional and advanced sperm function tests in patients with idiopathic male infertility. Antioxidants. 2020;9(3):219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Panner Selvam MK, Finelli R, Agarwal A, Henkel R. Evaluation of seminal oxidation–reduction potential in male infertility. Andrologia. 2021;53(2):e13610.

    Article  PubMed  Google Scholar 

  49. Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health. 2017;11(4):1279–304.

    Article  PubMed  Google Scholar 

  50. Guthrie H, Welch G. Effects of reactive oxygen species on sperm function. Theriogenology. 2012;78(8):1700–8.

    Article  CAS  PubMed  Google Scholar 

  51. Iommiello VM, Albani E, Di Rosa A, Marras A, Menduni F, Morreale G, et al. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int J Endocrinol. 2015;2015:321901.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Homa ST, Vessey W, Perez-Miranda A, Riyait T, Agarwal A. Reactive oxygen species (ROS) in human semen: determination of a reference range. J Assist Reprod Genet. 2015;32:757–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Agarwal A, Sharma RK, Sharma R, Assidi M, Abuzenadah AM, Alshahrani S, et al. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014;12(1):1–9.

    Article  Google Scholar 

  54. Venkatesh S, Singh G, Gupta NP, Kumar R, Deecaraman M, Dada R. Correlation of sperm morphology and oxidative stress in infertile men. Iran J Reprod Med. 2009;7(1):29–34.

    CAS  Google Scholar 

  55. El-Taieb MA, Ali MA, Nada EA. Oxidative stress and acrosomal morphology: a cause of infertility in patients with normal semen parameters. Middle East Fertil Soc J. 2015;20(2):79–85.

    Article  Google Scholar 

  56. Majzoub A, Arafa M, Mahdi M, Agarwal A, Al Said S, Al-Emadi I, et al. Oxidation–reduction potential and sperm DNA fragmentation, and their associations with sperm morphological anomalies amongst fertile and infertile men. Arab J Urol. 2018;16(1):87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dorostghoal M, Kazeminejad S, Shahbazian N, Pourmehdi M, Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia. 2017;49(10):e12762.

    Article  Google Scholar 

  58. El-Sakka AI. Routine assessment of sperm DNA fragmentation in clinical practice: commentary and perspective. Transl Androl Urol. 2017;6(4):640.

    Article  Google Scholar 

  59. Kumar TR, Doreswamy K, Shrilatha B. Oxidative stress associated DNA damage in testis of mice: induction of abnormal sperms and effects on fertility. Mutat Res. 2002;513(1-2):103–11.

    Article  Google Scholar 

  60. La Maestra S, De Flora S, Micale RT. Effect of cigarette smoke on DNA damage, oxidative stress, and morphological alterations in mouse testis and spermatozoa. Int J Hyg Environ Health. 2015;218(1):117–22.

    Article  PubMed  Google Scholar 

  61. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.

    Article  CAS  PubMed  Google Scholar 

  62. Martínez-Soto JC, Domingo JC, Cordobilla B, Nicolás M, Fernández L, Albero P, et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med. 2016;62(6):387–95.

    Article  PubMed  Google Scholar 

  63. Abad C, Amengual M, Gosálvez J, Coward K, Hannaoui N, Benet J, et al. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia. 2013;45(3):211–6.

    Article  CAS  PubMed  Google Scholar 

  64. Sengupta P, Roychoudhury S, Nath M, Dutta S. Oxidative stress and idiopathic male infertility. In: Oxidative stress and toxicity in reproductive biology and medicine: a comprehensive update on male infertility, vol. 1. Cham: Springer; 2022. p. 181–204.

    Chapter  Google Scholar 

  65. Sikka SC. Andrology lab corner: role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2004;25(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  66. Henkel RR, Schill W-B. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1(1):1–22.

    Article  Google Scholar 

  67. Sengupta P, Dutta S, Alahmar AT. Reproductive tract infection, inflammation and male infertility. Chem Biol Lett. 2020;7(2):75–84.

    CAS  Google Scholar 

  68. Ribas-Maynou J, Yeste M, Salas-Huetos A. The relationship between sperm oxidative stress alterations and IVF/ICSI outcomes: a systematic review from nonhuman mammals. Biology. 2020;9(7):178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gupta S, Sekhon L, Kim Y, Agarwal A. The role of oxidative stress and antioxidants in assisted reproduction. Curr Womens Health Rev. 2010;6:227–38.

    Article  CAS  Google Scholar 

  70. Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl. 2008;29(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  71. Agarwal A, Majzoub A. Laboratory tests for oxidative stress. Indian J Urol. 2017;33(3):199.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev. 1995;7(4):659–68.

    Article  CAS  PubMed  Google Scholar 

  73. McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108(8):652–9.

    Article  CAS  PubMed  Google Scholar 

  74. Rael LT, Bar-Or R, Mains CW, Slone DS, Levy AS, Bar-Or D. Plasma oxidation-reduction potential and protein oxidation in traumatic brain injury. J Neurotrauma. 2009;26(8):1203–11.

    Article  PubMed  Google Scholar 

  75. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016;106(3):566–73.

    Article  CAS  PubMed  Google Scholar 

  76. Pluschkell SB, Flickinger MC. Improved methods for investigating the external redox potential in hybridoma cell culture. Cytotechnology. 1995;19(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  77. Polson D, Villalba N, Freeman K. Optimization of a diagnostic platform for oxidation–reduction potential (ORP) measurement in human plasma. Red Rep. 2018;23(1):125–9.

    Article  CAS  Google Scholar 

  78. Stagos D, Goutzourelas N, Bar-Or D, Ntontou A-M, Bella E, Becker AT, et al. Application of a new oxidation-reduction potential assessment method in strenuous exercise-induced oxidative stress. Red Rep. 2015;20(4):154–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, P., Dutta, S., Saleh, R. (2024). Assessment of Seminal Oxidative Stress. In: Agarwal, A., Boitrelle, F., Saleh, R., Shah, R. (eds) Human Semen Analysis. Springer, Cham. https://doi.org/10.1007/978-3-031-55337-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55337-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55336-3

  • Online ISBN: 978-3-031-55337-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics