Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A geometric approach to rank metric codes and a classification of constant weight codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work we develop a geometric approach to the study of rank metric codes. Using this method, we introduce a simpler definition for generalized rank weight of linear codes. We give a complete classification of constant rank weight code and we give their generalized rank weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. ARS Comb. 18, 181–186 (1983).

    MathSciNet  MATH  Google Scholar 

  2. Cai N., Yeung R.W.: Secure network coding. In: Proceedings IEEE International Symposium on Information Theory, p. 323 (2002). https://doi.org/10.1109/ISIT.2002.1023595.

  3. Csajbók B., Marino G., Polverino O., Zullo F.: Maximum scattered linear sets and MRD-codes. J. Algebr. Comb. 46(3), 517–531 (2017). https://doi.org/10.1007/s10801-017-0762-6.

    Article  MathSciNet  MATH  Google Scholar 

  4. Csajbók B., Marino G., Polverino O., Zullo F.: A special class of scattered subspaces (2019).

  5. Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978). https://doi.org/10.1016/0097-3165(78)90015-8.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ducoat J., Kyureghyan G.: Generalized rank weights: a duality statement. Top. Finite Fields 632, 101–109 (2015).

    MathSciNet  MATH  Google Scholar 

  7. El Rouayheb S.Y., Soljanin E.: On wiretap networks II. In: 2007 IEEE International Symposium on Information Theory, pp. 551–555 (2007).https://doi.org/10.1109/ISIT.2007.4557098.

  8. Gabidulin E.: Theory of codes with maximum rank distance (translation). Problems Inform. Transm. 21, 1–12 (1985).

    MathSciNet  MATH  Google Scholar 

  9. Gabidulin E.M., Paramonov A.V., Tretjakov O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies D.W. (ed.) Advances in Cryptology—EUROCRYPT ’91, pp. 482–489. Springer, Berlin (1991).

    Chapter  Google Scholar 

  10. Giuzzi L., Zullo F.: Identifiers for MRD-codes. Linear Algebra Appl. 575, 66–86 (2019). https://doi.org/10.1016/j.laa.2019.03.030.

    Article  MathSciNet  MATH  Google Scholar 

  11. Helleseth T., Kløve T., Mykkeltveit J.: The weight distribution of irreducible cyclic codes with block lengths \(n_1((q^1-1)N)\). Discret. Math. 18(2), 179–211 (1977). https://doi.org/10.1016/0012-365X(77)90078-4.

    Article  MATH  Google Scholar 

  12. Hill R.: Caps and codes. Discret. Math. 22(2), 111–137 (1978). https://doi.org/10.1016/0012-365X(78)90120-6.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jurrius R., Pellikaan R.: The extended and generalized rank weight enumerator of a code. ACM Commun. Comput. Algebra 49(1), 21–21 (2015). https://doi.org/10.1145/2768577.2768605.

    Article  MATH  Google Scholar 

  14. Jurrius R., Pellikaan R.: On defining generalized rank weights. Adv. Math. Commun. 11, 225 (2017). https://doi.org/10.3934/amc.2017014.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurihara J., Matsumoto R., Uyematsu T.: Relative generalized rank weight of linear codes and its applications to network coding. IEEE Trans. Inform. Theory 61(7), 3912–3936 (2015). https://doi.org/10.1109/TIT.2015.2429713.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lavrauw M., Van de Voorde G.: Field reduction and linear sets in finite geometry. Top. Finite Fields 632, 271–293 (2015).

    MathSciNet  MATH  Google Scholar 

  17. Liu Z., Chen W.: Notes on the value function. Des. Codes Cryptogr. 54(1), 11 (2009). https://doi.org/10.1007/s10623-009-9305-z.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lunardon G.: Normal spreads. Geom. Dedicata 75(3), 245–261 (1999). https://doi.org/10.1023/A:1005052007006.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lunardon G.: MRD-codes and linear sets. J. Comb. Theory Ser. A 149, 1–20 (2017). https://doi.org/10.1016/j.jcta.2017.01.002.

    Article  MathSciNet  MATH  Google Scholar 

  20. Martínez-Peñas U.: On the similarities between generalized rank and Hamming weights and their applications to network coding. IEEE Trans. Inform. Theory 62(7), 4081–4095 (2016). https://doi.org/10.1109/TIT.2016.2570238.

    Article  MathSciNet  MATH  Google Scholar 

  21. Morrison K.: Equivalence for rank-metric and matrix codes and automorphism groups of Gabidulin codes. IEEE Trans. Inform. Theory 60(11), 7035–7046 (2014). https://doi.org/10.1109/TIT.2014.2359198.

    Article  MathSciNet  MATH  Google Scholar 

  22. Oggier F., Sboui A.: On the existence of generalized rank weights. In: 2012 International Symposium on Information Theory and its Applications, pp. 406–410 (2012).

  23. Ozarow L.H., Wyner A.D.: Wire-tap Channel II. In: Beth T., Cot N., Ingemarsson I. (eds.) Advances in Cryptology, pp. 33–50. Springer, Berlin (1985).

    Chapter  Google Scholar 

  24. Polverino O.: Linear sets in finite projective spaces. Discret. Math. 310(22), 3096–3107 (2010). https://doi.org/10.1016/j.disc.2009.04.007. (Combinatorics 2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. Ravagnani A.: Generalized weights: an anticode approach. J. Pure Appl. Algebra 220(5), 1946–1962 (2016). https://doi.org/10.1016/j.jpaa.2015.10.009.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheekey J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10, 475 (2016). https://doi.org/10.3934/amc.2016019.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sheekey J.: Mrd codes: constructions and connections. In: Schmidt K.U., Winterhof A. (eds.) Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, vol. 23, pp. 255–286. De Gruyter, Berlin (2019). (chap. 13).

    Chapter  Google Scholar 

  28. Sheekey J.: New semifields and new MRD codes from skew polynomial rings. J. Lond. Math. Soc. (2019). https://doi.org/10.1112/jlms.12281.

    Article  MATH  Google Scholar 

  29. Sheekey J., Van de Voorde G.: Rank-metric codes, linear sets, and their duality. Des. Codes Cryptogr. (2019). https://doi.org/10.1007/s10623-019-00703-z.

  30. Tsfasman M.A., VlăduŢ S.G.: Codes and Their Parameters, pp. 5–35. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3810-9_1.

    Book  Google Scholar 

  31. Tsfasman M.A., Vladut S.G.: Geometric approach to higher weights. IEEE Trans. Inform. Theory 41(6), 1564–1588 (1995).

    Article  MathSciNet  Google Scholar 

  32. Wei V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37(5), 1412–1418 (1991). https://doi.org/10.1109/18.133259.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Rakhi Pratihar and Prof. Sudhir Ghorparde for their valuable comments and suggestions on this work. I also would like to thank the anonymous reviewer who introduced me to linear sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tovohery Hajatiana Randrianarisoa.

Additional information

Communicated by I. Landjev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by the Swiss National Science Foundation Grant No. 181446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randrianarisoa, T.H. A geometric approach to rank metric codes and a classification of constant weight codes. Des. Codes Cryptogr. 88, 1331–1348 (2020). https://doi.org/10.1007/s10623-020-00750-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00750-x

Keywords

Mathematics Subject Classification

Navigation