Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Maximum scattered linear sets and MRD-codes

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

The rank of a scattered \({\mathbb F}_q\)-linear set of \({{\mathrm{{PG}}}}(r-1,q^n)\), rn even, is at most rn / 2 as it was proved by Blokhuis and Lavrauw. Existence results and explicit constructions were given for infinitely many values of r, n, q (rn even) for scattered \({\mathbb F}_q\)-linear sets of rank rn / 2. In this paper, we prove that the bound rn / 2 is sharp also in the remaining open cases. Recently Sheekey proved that scattered \({\mathbb F}_q\)-linear sets of \({{\mathrm{{PG}}}}(1,q^n)\) of maximum rank n yield \({\mathbb F}_q\)-linear MRD-codes with dimension 2n and minimum distance \(n-1\). We generalize this result and show that scattered \({\mathbb F}_q\)-linear sets of \({{\mathrm{{PG}}}}(r-1,q^n)\) of maximum rank rn / 2 yield \({\mathbb F}_q\)-linear MRD-codes with dimension rn and minimum distance \(n-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, S., Blokhuis, A., Lavrauw, M.: Linear \((q+1)\)-fold blocking sets in \(PG(2, q^4)\). Finite Fields Appl. 6(4), 294–301 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartoli, D., Giulietti, M., Marino, G., Polverino, O.: Maximum scattered linear sets and complete caps in Galois spaces. Combinatorica (2017). doi:10.1007/s00493-016-3531-6

    Google Scholar 

  3. Berger, T.: Isometries for rank distance and permutation group of Gabidulin codes. IEEE Trans. Inf. Theory 49, 3016–3019 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blokhuis, A., Lavrauw, M.: Scattered spaces with respect to a spread in \(PG(n, q)\). Geom. Dedic. 81(1–3), 231–243 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blokhuis, A., Lavrauw, M.: On two-intersection sets with respect to hyperplanes in projective spaces. J. Comb. Theory Ser. A 99(2), 377–382 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonoli, G., Polverino, O.: The twisted cubic of \(PG(3, q)\) and translation spreads of \(H(q)\). Discrete Math. 296, 129–142 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonoli, G., Polverino, O.: \({\mathbb{F}}_{q}\)-linear blocking sets in \(PG(2, q^4)\). Innov. Incid. Geom. 2, 35–56 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Calderbank, R., Kantor, W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cardinali, I., Lunardon, G., Polverino, O., Trombetti, R.: Translation spreads of the classical generalized hexagon. Eur. J. Comb. 23, 367–376 (2002)

    Article  MATH  Google Scholar 

  10. Cardinali, I., Polverino, O., Trombetti, R.: Semifield planes of order \(q^4\) with kernel \({\mathbb{F}}_{q^{2}}\) and center \({\mathbb{F}}_q\). Eur. J. Comb. 27, 940–961 (2006)

    Article  MATH  Google Scholar 

  11. Csajbók, B., Marino, G., Polverino, O.: Classes and equivalence of linear sets in \(\text{PG}(1,q^n)\). (submitted) arXiv:1607.06962

  12. Csajbók, B., Zanella, C.: On the equivalence of linear sets. Des. Codes Cryptogr. 81(2), 269–281 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  13. Csajbók, B., Zanella, C.: On scattered linear sets of pseudoregulus type in \(PG(1, q^t)\). Finite Fields Appl. 41, 34–54 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25, 226–241 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ebert, G.L., Marino, G., Polverino, O., Trombetti, R.: Infinite families of new semifields. Combinatorica 29(6), 637–663 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gabidulin, E.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21(3), 3–16 (1985)

    MATH  MathSciNet  Google Scholar 

  17. Gadouleau, M. and Yan, Z.: Properties of codes with the rank metric. In: IEEE Global Telecommunications Conference, pp. 1–5 (2006)

  18. Glynn, D., Steinke, G.: Laguerre planes of even order and translation ovals. Geom. Dedic. 51, 105–112 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kshevetskiy, A. and Gabidulin, E.: The new construction of rank codes. In: International Symposium on Information Theory, ISIT 2005. Proceedings, pp. 2105–2108, Sept 2005

  20. Koetter, R., Kschischang, F.: Coding for errors and erasure in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lavrauw, M.: Scattered Spaces with respect to Spreads and Eggs in Finite Projective Spaces, Ph.D. Thesis (2001)

  22. Lavrauw, M.: Scattered spaces in Galois geometry. In: Contemporary Developments in Finite Fields and Applications, pp. 195–216. World Sci. Publ., Hackensack, NJ (2016)

  23. Lavrauw, M., Marino, G., Polverino, O., Trombetti, R.: \({\mathbb{F}}_q\)-pseudoreguli of \(PG(3, q^3)\) and scattered semifields of order \(q^6\). Finite Fields Appl. 17, 225–239 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lavrauw, M., Marino, G., Polverino, O., Trombetti, R.: Solution to an isotopism question concerning rank 2 semifields. J. Comb. Des. 23, 60–77 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lavrauw, M., Marino, G., Polverino, O., Trombetti, R.: The isotopism problem of a class of 6-dimensional rank 2 semifields and its solution. Finite Fields Appl. 34, 250–264 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lavrauw, M., Van de Voorde, G.: On linear sets on a projective line. Des. Codes Cryptogr. 56, 89–104 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lavrauw, M. and Van de Voorde, G.: Scattered linear sets and pseudoreguli, Electron. J. Comb 20(1) (2013)

  28. Lavrauw, M., Van de Voorde, G.: Field reduction and linear sets in finite geometry. In: Kyureghyan, G., Mullen, G.L., Pott, A. (eds.) Topics in Finite Fields. Contemporary Mathematics, AMS, Providence (2015)

    Google Scholar 

  29. Lidl, R., Niederreiter, H.: Finite Fields, Volume 20 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (1997)

  30. Lunardon, G.: Linear \(k\)-blocking sets. Combinatorica 21(4), 571–581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lunardon, G.: Translation ovoids. J. Geom. 76, 200–215 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lunardon, G.: MRD-codes and linear sets. J. Comb. Theory Ser. A 149, 1–20 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lunardon, G., Marino, G., Polverino, O., Trombetti, R.: Maximum scattered linear sets of pseudoregulus type and the Segre Variety \({\cal{S}}_{n, n}\). J. Algebr. Comb. 39, 807–831 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lunardon, G., Polverino, O.: Blocking sets of size \(q^t+q^{t-1}+1\). J. Comb. Theory Ser. A 90, 148–158 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lunardon, G., Polverino, O.: Translation ovoids of orthogonal polar spaces. Forum Math. 16, 663–669 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lunardon, G., Trombetti, R., Zhou, Y.: Generalized Twisted Gabidulin Codes. arXiv:1507.07855

  37. Marino, G., Polverino, O.: On translation spreads of \(H(q)\). J. Algebr. Comb. 42(3), 725–744 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Marino, G., Polverino, O., Trombetti, R.: On \({\mathbb{F}}_q\)-linear sets of \(\text{ PG }(3, q^3)\) and semifields. J. Comb. Theory Ser. A 114, 769–788 (2007)

    Article  MATH  Google Scholar 

  39. Morrison, K.: Equivalence for rank-metric and matrix codes and automorphism groups of gabidulin codes. IEEE Trans. Inf. Theory 60(11), 7035–7046 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Polverino, O.: Linear sets in finite projective spaces. Discrete Math. 310, 3096–3107 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Polito, P., Polverino, O.: On small blocking sets. Combinatorica 18(1), 133–137 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sheekey, J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10(3), 475–488 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Polverino.

Additional information

The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA—INdAM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csajbók, B., Marino, G., Polverino, O. et al. Maximum scattered linear sets and MRD-codes. J Algebr Comb 46, 517–531 (2017). https://doi.org/10.1007/s10801-017-0762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-017-0762-6

Keywords

Navigation