Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The computational reconstruction of Gene Regulatory Networks (GRNs) from gene expression data has been modelled as a complex optimisation problem, which enables the use of sophisticated search methods to address it. Among these techniques, particle swarm optimisation based algorithms stand out as prominent techniques with fast convergence and accurate network inferences. A multi-objective approach for the inference of GRNs consists of optimising a given network’s topology while tuning the kinetic order parameters in an S-System, thus preventing the use of unnecessary penalty weights and enables the adoption of Pareto optimality based algorithms. In this study, we empirically assess the behaviour of a set of multi-objective particle swarm optimisers based on different archiving and leader selection strategies in the scope of the inference of GRNs. The main goal is to provide system biologists with experimental evidence about which optimisation technique performs with higher success for the inference of consistent GRNs. The experiments conducted involve time-series datasets of gene expression taken from the DREAM3/4 standard benchmarks, as well as in vivo datasets from IRMA and Melanoma cancer samples. Our study shows that multi-objective particle swarm optimiser OMOPSO obtains the best overall performance. Inferred networks show biological consistency in accordance with in vivo studies in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Without loss of generality, we assume minimization for algorithmic definitions.

  2. Online Available at URL http://jmetal.sourceforge.net/

  3. Online Available at URL http://dreamchallenges.org

  4. Online Available in URL https://www.nanostring.com/

  5. Online Available in URL http://geneontology.org/

References

  1. Abhishek, Singh S (2013) Article: A gene regulatory network prediction method using particle swarm optimization and genetic algorithm. International Journal of Computer Applications 83(12):32–37. Full text available

    Article  Google Scholar 

  2. Akutsu T (2003) Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model. Theor Comput Sci 298(1):235–251

    Article  MathSciNet  Google Scholar 

  3. Bartz-Beielstein T (2006) Experimental research in evolutionary computation: the new experimentalism (natural computing series). Springer-Verlag, Berlin Heidelberg

    MATH  Google Scholar 

  4. Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and Iterated f-race: An Overview. Springer, Berlin, Heidelberg, pp 311–336

    MATH  Google Scholar 

  5. Brady MS, Eckels DD, Ree SY, Schultheiss KE, Lee JS (1996) Mhc class ii-mediated antigen presentation by melanoma cells. Journal of immunotherapy with emphasis on tumor immunology: Official journal of the Society for Biological Therapy 19(6): 387–397

    Article  Google Scholar 

  6. Cai X (2009) A multi-objective gp-pso hybrid algorithm for gene regulatory network modeling. Ph.D. thesis, Manhattan, KS, USA. AAI3358776

  7. Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1):172–181. https://doi.org/10.1016/j.cell.2009.01.055, http://www.sciencedirect.com/science/article/pii/S0092867409001561

    Article  Google Scholar 

  8. Chen Y, Zou X Inferring gene regulatory network using an evolutionary multi-objective method. arXiv:1512.05055, Cornell University Library (2016). https://arxiv.org/abs/1512.05055

  9. Clerc M, Kennedy J (2002) The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  10. Coello Coello CA, Toscano Pulido G, Salazar Lechuga M (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  11. Deb K (2001) Multi-Objective Optimization using evolutionary algorithms. John wiley & sons, Inc., New York

    MATH  Google Scholar 

  12. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  13. Durillo JJ, García-Nieto J., Nebro AJ, Coello CAC, Luna F, Alba E (2009) 5th Int. Conf. Evol. Multi-criterion Optimization, chap. Multi-objective Particle Swarm optimizers: An Experimental Comparison, pp. 495–509 Springer

  14. Durillo JJ, Nebro AJ, Coello CAC, Garcia-Nieto J, Luna F, Alba E (2010) A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans Evol Comput 14(4):618–635. https://doi.org/10.1109/TEVC.2009.2034647

    Article  Google Scholar 

  15. Eiben AE, Smit SK (2012) Evolutionary Algorithm Parameters and Methods to Tune Them, pp. 15–36. Berlin Heidelberg. Springer, Berlin Heidelberg

    Google Scholar 

  16. García-Nieto J, Nebro AJ, Aldana-Montes JF (2019) Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Comput Biol Chem 80:409–418

    Article  Google Scholar 

  17. Hitoshi Iba NN (2016) Evolutionary computation in gene regulatory network research. Wiley, Series in Bioinformatics

  18. Huynh-Thu A, Sanguinetti G (2015) Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics 31(10):1614–1622. https://doi.org/10.1093/bioinformatics/btu863

    Article  Google Scholar 

  19. Iglesias-Martinez LF, Kolch W, Santra T (2016) Bgrmi: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research. Nature, Scientific Reports 6(37140). https://doi.org/10.1038/srep37140

  20. Ishibuchi H, Masuda H, Nojima Y (2016) Sensitivity of performance evaluation results by inverted generational distance to reference points. In: 2016 IEEE Congress on evolutionary computation (CEC), pp. 1107–1114, DOI https://doi.org/10.1109/CEC.2016.7743912

  21. Jana B, Mitra S, Acharyya S (2019) Repository and mutation based particle swarm optimization (rmpso): A new pso variant applied to reconstruction of gene regulatory network. Applied Soft Computing 74:330–355. https://doi.org/10.1016/j.asoc.2018.09.027, http://www.sciencedirect.com/science/article/pii/S1568494618305441

    Article  Google Scholar 

  22. Kaznessis YN (2007) Models for synthetic biology. BMC Syst Biol 1(1):47. https://doi.org/10.1186/1752-0509-1-47

    Article  Google Scholar 

  23. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE IJCNN, vol. 4, pp. 1942–1948 vol.4

  24. Khan A, Mandal S, Pal RK, Saha G (2016) Construction of gene regulatory networks using recurrent neural networks and swarm intelligence. Scientifica 2016 Article ID 1060,843 14 pages. https://doi.org/10.1155/2016/1060843

  25. Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics 19(5):643–650

    Article  Google Scholar 

  26. Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A (2005) Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21(7):1154–1163. https://doi.org/10.1093/bioinformatics/bti071

    Article  Google Scholar 

  27. Klopfenstein D, Zhang L, Pedersen BS, Ramírez F., Vesztrocy AW, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, et al. (2018) Goatools: A python library for gene ontology analyses. Scientific reports 8(1):10,872

    Article  Google Scholar 

  28. Lee JE, Reveille JD, Ross MI, Platsoucas CD (1994) Hla-dqb1* 0301 association with increased cutaneous melanoma risk. International journal of cancer 59(4):510–513

    Article  Google Scholar 

  29. Lee WP, Hsiao YT (2012) Inferring gene regulatory networks using a hybrid GA-PSO approach with numerical constraints and network decomposition. Information Sciences 188:80–99. https://doi.org/10.1016/j.ins.2011.11.020, http://www.sciencedirect.com/science/article/pii/S0020025511006050

    Article  Google Scholar 

  30. Liu L, Liu J (2018) Inferring gene regulatory networks with hybrid of multi-agent genetic algorithm and random forests based on fuzzy cognitive maps. Applied Soft Computing 69:585–598. https://doi.org/10.1016/j.asoc.2018.05.009, http://www.sciencedirect.com/science/article/pii/S1568494618302709

    Article  Google Scholar 

  31. Liu PK, Wang FS (2008) Inference of biochemical network models in s-system using multiobjective optimization approach. Bioinformatics 24(8):1085. https://doi.org/10.1093/bioinformatics/btn075

    Article  MathSciNet  Google Scholar 

  32. Liu PK, Wang FS (2008) Inference of biochemical network models in s-system using multiobjective optimization approach. Bioinformatics 24(8):1085–1092. https://doi.org/10.1093/bioinformatics/btn075

    Article  MathSciNet  Google Scholar 

  33. Navas-Delgado I, García-Nieto J, López-Camacho E, Rybinski M, Lavado R, Berciano Guerrero MÁ, Aldana-Montes JF (2019) Vigla-m: visual gene expression data analytics. BMC Bioinformatics 20(4):150. https://doi.org/10.1186/s12859-019-2695-7. https://doi.org/10.1186/s12859-019-2695-7

    Article  Google Scholar 

  34. Nebro A, Durillo J, Coello CC (2013) Analysis of leader selection strategies in a mopso. In: IEEE Cong. on evol. Comp. (CEC), pp. 3153–3160, DOI https://doi.org/10.1109/CEC.2013.6557955

  35. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello Coello CA, Luna F, Alba E (2009) SMPSO: A New PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on computational intelligence in multi-criteria decision-making, pp. 66–73, DOI https://doi.org/10.1109/MCDM.2009.4938830

  36. Nebro AJ, Durillo JJ, Vergne M (2015) Redesigning the jmetal multi-objective optimization framework. In: Genetic and evolutionary computation conference (GECCO 2015) companion, pp. 1093–1100

  37. Nobile MS, Iba H (2015) A double swarm methodology for parameter estimation in oscillating gene regulatory networks 2015 IEEE Congress on evolutionary computation (CEC), pp. 2376–2383, DOI https://doi.org/10.1109/CEC.2015.7257179

  38. Noman N, Iba H (2007) Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(4):634–647. http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.1058

    Article  Google Scholar 

  39. Palafox L, Noman N, Iba H (2013) Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. Evolutionary Computation IEEE Transactions on 17(4):577–587. https://doi.org/10.1109/TEVC.2012.2218610

    Article  Google Scholar 

  40. Parsopoulos K, Tasoulis D, Vrahatis M (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2004), vol. 2, pp 823-828, ACTA Press, Innsbruck, Austria

  41. Pirgazi J, Khanteymoori AR (2018) A robust gene regulatory network inference method base on kalman filter and linear regression. PLOS ONE 13(7):1–17. https://doi.org/10.1371/journal.pone.0200094

    Article  Google Scholar 

  42. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G (2010) Towards a rigorous assessment of systems biology models: The dream3 challenges. PLoS ONE 5(2):1–18. https://doi.org/10.1371/journal.pone.0009202

    Article  Google Scholar 

  43. Raza K, Alam M (2016) Recurrent neural network based hybrid model for reconstructing gene regulatory network. Comput Biol Chem 64:322–334

    Article  Google Scholar 

  44. Reyes-Sierra M, Coello Coello CA (2006) Multi-Objective Particle Swarm optimizers: A Survey of the state-of-the-Art. International Journal of Computational Intelligence Research 2(3):287–308

    MathSciNet  Google Scholar 

  45. Savageau M (2010) Biochemical systems analysis: a study of function and design in molecular biology Addison-Wesley educational publishers inc

  46. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, pp. 93–100

  47. Sheskin DJ (2007) Handbook of Parametric and Nonparametric Statistical Procedures Chapman & hall/CRC

  48. Sierra MR, Coello CAC (2005) Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Evolutionary multi-criterion optimization, third international conference, EMO 2005, guanajuato, mexico, march 9-11, 2005, proceedings, pp. 505–519

  49. Sirbu A, Ruskin HJ, Crane M (2010) Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics 11(1):59. https://doi.org/10.1186/1471-2105-11-59

    Article  Google Scholar 

  50. Song X, Zhang Y, Guo Y, Sun X, Wang Y (2020) Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data. IEEE Transactions on Evolutionary Computation Early Access, p 1–1

  51. Spieth C, Streichert F, Speer N, Zell A (2005) Multi-objective model optimization for inferring gene regulatory networks . In: Coello Coello C, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization, lecture notes in computer science, vol. 3410, pp. 607–620. Springer berlin heidelberg, DOI https://doi.org/10.1007/978-3-540-31880-4_42

  52. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102 (43):15,545–15,550

    Article  Google Scholar 

  53. Sultana R, Showkat D, Samiullah M, Chowdhury AR (2014) Reconstructing gene regulatory network with enhanced particle swarm optimization. In: Loo CK, Yap KS, Wong KW, Teoh A, Huang K (eds) Neural information processing, pp 229-236. Springer International Publishing, Cham

  54. Tatsis VA, Parsopoulos KE (2019) Dynamic parameter adaptation in metaheuristics using gradient approximation and line search. Applied Soft Computing 74:368–384. https://doi.org/10.1016/j.asoc.2018.09.034, http://www.sciencedirect.com/science/article/pii/S1568494618305519

    Article  Google Scholar 

  55. Tilford CA, Siemers NO (2009) Gene set enrichment analysis. In: Protein networks and pathway analysis, pp. 99–121. Springer

  56. Tominaga D, Koga N, Okamoto M (2000) Efficient numerical optimization algorithm based on genetic algorithm for inverse problem. In: Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary Computation, GECCO’00, pp 251-258. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

  57. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences 177(22):5033–5049

    Article  MathSciNet  Google Scholar 

  58. Tsai KY, Wang FS (2005) Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21(7):1180–1188. https://doi.org/10.1093/bioinformatics/bti099

    Article  Google Scholar 

  59. Voit EO (2000) Computational analysis of biochemical systems. a practical guide for biochemists and molecular biologists cambridge university press

  60. Xu R, II DW, Frank R (2007) Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(4):681–692. https://doi.org/10.1109/TCBB.2007.1057

    Article  Google Scholar 

  61. Zapotecas Martínez S, Coello Coello CA (2011) A Multi-objective Particle Swarm Optimizer Based on Decomposition. In: 2011 Genetic and evolutionary computation conference (GECCO’2011), pp 69-76. ACM Press, Dublin, Ireland

  62. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evol. Comp. 11(6):712–731

    Article  Google Scholar 

  63. Zhang Y, Gong DW, Cheng J (2017) Multi-objective particle swarm optimization approach for cost-based feature selection in classification. IEEE/ACM Trans. Comput. Biol. Bioinformatics 14(1):64–75

    Article  Google Scholar 

  64. Zhang Y, Gong D-W, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inform Sci 192:213–227. ISSN 0020-0255, https://doi.org/10.1016/j.ins.2011.06.004

    Article  Google Scholar 

  65. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. on Evol. Comp. 3(4):257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José García-Nieto.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially funded by the Spanish Ministry of Science and Innovation via Grant TIN2017-86049-R (AEI/FEDER, UE) and Andalusian PAIDI program with grant P18-RT-2799. José García-Nieto is the recipient of a Post-Doctoral fellowship of “Captación de Talento para la Investigación” Plan Propio at Universidad de Málaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, S., García-Nieto, J., Navas-Delgado, I. et al. Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Appl Intell 51, 1972–1991 (2021). https://doi.org/10.1007/s10489-020-01891-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01891-1

Keywords

Navigation