Abstract
The computational reconstruction of Gene Regulatory Networks (GRNs) from gene expression data has been modelled as a complex optimisation problem, which enables the use of sophisticated search methods to address it. Among these techniques, particle swarm optimisation based algorithms stand out as prominent techniques with fast convergence and accurate network inferences. A multi-objective approach for the inference of GRNs consists of optimising a given network’s topology while tuning the kinetic order parameters in an S-System, thus preventing the use of unnecessary penalty weights and enables the adoption of Pareto optimality based algorithms. In this study, we empirically assess the behaviour of a set of multi-objective particle swarm optimisers based on different archiving and leader selection strategies in the scope of the inference of GRNs. The main goal is to provide system biologists with experimental evidence about which optimisation technique performs with higher success for the inference of consistent GRNs. The experiments conducted involve time-series datasets of gene expression taken from the DREAM3/4 standard benchmarks, as well as in vivo datasets from IRMA and Melanoma cancer samples. Our study shows that multi-objective particle swarm optimiser OMOPSO obtains the best overall performance. Inferred networks show biological consistency in accordance with in vivo studies in the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Without loss of generality, we assume minimization for algorithmic definitions.
Online Available at URL http://jmetal.sourceforge.net/
Online Available at URL http://dreamchallenges.org
Online Available in URL https://www.nanostring.com/
Online Available in URL http://geneontology.org/
References
Abhishek, Singh S (2013) Article: A gene regulatory network prediction method using particle swarm optimization and genetic algorithm. International Journal of Computer Applications 83(12):32–37. Full text available
Akutsu T (2003) Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model. Theor Comput Sci 298(1):235–251
Bartz-Beielstein T (2006) Experimental research in evolutionary computation: the new experimentalism (natural computing series). Springer-Verlag, Berlin Heidelberg
Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and Iterated f-race: An Overview. Springer, Berlin, Heidelberg, pp 311–336
Brady MS, Eckels DD, Ree SY, Schultheiss KE, Lee JS (1996) Mhc class ii-mediated antigen presentation by melanoma cells. Journal of immunotherapy with emphasis on tumor immunology: Official journal of the Society for Biological Therapy 19(6): 387–397
Cai X (2009) A multi-objective gp-pso hybrid algorithm for gene regulatory network modeling. Ph.D. thesis, Manhattan, KS, USA. AAI3358776
Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1):172–181. https://doi.org/10.1016/j.cell.2009.01.055, http://www.sciencedirect.com/science/article/pii/S0092867409001561
Chen Y, Zou X Inferring gene regulatory network using an evolutionary multi-objective method. arXiv:1512.05055, Cornell University Library (2016). https://arxiv.org/abs/1512.05055
Clerc M, Kennedy J (2002) The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Coello Coello CA, Toscano Pulido G, Salazar Lechuga M (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279
Deb K (2001) Multi-Objective Optimization using evolutionary algorithms. John wiley & sons, Inc., New York
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
Durillo JJ, García-Nieto J., Nebro AJ, Coello CAC, Luna F, Alba E (2009) 5th Int. Conf. Evol. Multi-criterion Optimization, chap. Multi-objective Particle Swarm optimizers: An Experimental Comparison, pp. 495–509 Springer
Durillo JJ, Nebro AJ, Coello CAC, Garcia-Nieto J, Luna F, Alba E (2010) A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans Evol Comput 14(4):618–635. https://doi.org/10.1109/TEVC.2009.2034647
Eiben AE, Smit SK (2012) Evolutionary Algorithm Parameters and Methods to Tune Them, pp. 15–36. Berlin Heidelberg. Springer, Berlin Heidelberg
García-Nieto J, Nebro AJ, Aldana-Montes JF (2019) Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Comput Biol Chem 80:409–418
Hitoshi Iba NN (2016) Evolutionary computation in gene regulatory network research. Wiley, Series in Bioinformatics
Huynh-Thu A, Sanguinetti G (2015) Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics 31(10):1614–1622. https://doi.org/10.1093/bioinformatics/btu863
Iglesias-Martinez LF, Kolch W, Santra T (2016) Bgrmi: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research. Nature, Scientific Reports 6(37140). https://doi.org/10.1038/srep37140
Ishibuchi H, Masuda H, Nojima Y (2016) Sensitivity of performance evaluation results by inverted generational distance to reference points. In: 2016 IEEE Congress on evolutionary computation (CEC), pp. 1107–1114, DOI https://doi.org/10.1109/CEC.2016.7743912
Jana B, Mitra S, Acharyya S (2019) Repository and mutation based particle swarm optimization (rmpso): A new pso variant applied to reconstruction of gene regulatory network. Applied Soft Computing 74:330–355. https://doi.org/10.1016/j.asoc.2018.09.027, http://www.sciencedirect.com/science/article/pii/S1568494618305441
Kaznessis YN (2007) Models for synthetic biology. BMC Syst Biol 1(1):47. https://doi.org/10.1186/1752-0509-1-47
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE IJCNN, vol. 4, pp. 1942–1948 vol.4
Khan A, Mandal S, Pal RK, Saha G (2016) Construction of gene regulatory networks using recurrent neural networks and swarm intelligence. Scientifica 2016 Article ID 1060,843 14 pages. https://doi.org/10.1155/2016/1060843
Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics 19(5):643–650
Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A (2005) Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21(7):1154–1163. https://doi.org/10.1093/bioinformatics/bti071
Klopfenstein D, Zhang L, Pedersen BS, Ramírez F., Vesztrocy AW, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, et al. (2018) Goatools: A python library for gene ontology analyses. Scientific reports 8(1):10,872
Lee JE, Reveille JD, Ross MI, Platsoucas CD (1994) Hla-dqb1* 0301 association with increased cutaneous melanoma risk. International journal of cancer 59(4):510–513
Lee WP, Hsiao YT (2012) Inferring gene regulatory networks using a hybrid GA-PSO approach with numerical constraints and network decomposition. Information Sciences 188:80–99. https://doi.org/10.1016/j.ins.2011.11.020, http://www.sciencedirect.com/science/article/pii/S0020025511006050
Liu L, Liu J (2018) Inferring gene regulatory networks with hybrid of multi-agent genetic algorithm and random forests based on fuzzy cognitive maps. Applied Soft Computing 69:585–598. https://doi.org/10.1016/j.asoc.2018.05.009, http://www.sciencedirect.com/science/article/pii/S1568494618302709
Liu PK, Wang FS (2008) Inference of biochemical network models in s-system using multiobjective optimization approach. Bioinformatics 24(8):1085. https://doi.org/10.1093/bioinformatics/btn075
Liu PK, Wang FS (2008) Inference of biochemical network models in s-system using multiobjective optimization approach. Bioinformatics 24(8):1085–1092. https://doi.org/10.1093/bioinformatics/btn075
Navas-Delgado I, García-Nieto J, López-Camacho E, Rybinski M, Lavado R, Berciano Guerrero MÁ, Aldana-Montes JF (2019) Vigla-m: visual gene expression data analytics. BMC Bioinformatics 20(4):150. https://doi.org/10.1186/s12859-019-2695-7. https://doi.org/10.1186/s12859-019-2695-7
Nebro A, Durillo J, Coello CC (2013) Analysis of leader selection strategies in a mopso. In: IEEE Cong. on evol. Comp. (CEC), pp. 3153–3160, DOI https://doi.org/10.1109/CEC.2013.6557955
Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello Coello CA, Luna F, Alba E (2009) SMPSO: A New PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on computational intelligence in multi-criteria decision-making, pp. 66–73, DOI https://doi.org/10.1109/MCDM.2009.4938830
Nebro AJ, Durillo JJ, Vergne M (2015) Redesigning the jmetal multi-objective optimization framework. In: Genetic and evolutionary computation conference (GECCO 2015) companion, pp. 1093–1100
Nobile MS, Iba H (2015) A double swarm methodology for parameter estimation in oscillating gene regulatory networks 2015 IEEE Congress on evolutionary computation (CEC), pp. 2376–2383, DOI https://doi.org/10.1109/CEC.2015.7257179
Noman N, Iba H (2007) Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(4):634–647. http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.1058
Palafox L, Noman N, Iba H (2013) Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. Evolutionary Computation IEEE Transactions on 17(4):577–587. https://doi.org/10.1109/TEVC.2012.2218610
Parsopoulos K, Tasoulis D, Vrahatis M (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2004), vol. 2, pp 823-828, ACTA Press, Innsbruck, Austria
Pirgazi J, Khanteymoori AR (2018) A robust gene regulatory network inference method base on kalman filter and linear regression. PLOS ONE 13(7):1–17. https://doi.org/10.1371/journal.pone.0200094
Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G (2010) Towards a rigorous assessment of systems biology models: The dream3 challenges. PLoS ONE 5(2):1–18. https://doi.org/10.1371/journal.pone.0009202
Raza K, Alam M (2016) Recurrent neural network based hybrid model for reconstructing gene regulatory network. Comput Biol Chem 64:322–334
Reyes-Sierra M, Coello Coello CA (2006) Multi-Objective Particle Swarm optimizers: A Survey of the state-of-the-Art. International Journal of Computational Intelligence Research 2(3):287–308
Savageau M (2010) Biochemical systems analysis: a study of function and design in molecular biology Addison-Wesley educational publishers inc
Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, pp. 93–100
Sheskin DJ (2007) Handbook of Parametric and Nonparametric Statistical Procedures Chapman & hall/CRC
Sierra MR, Coello CAC (2005) Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Evolutionary multi-criterion optimization, third international conference, EMO 2005, guanajuato, mexico, march 9-11, 2005, proceedings, pp. 505–519
Sirbu A, Ruskin HJ, Crane M (2010) Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics 11(1):59. https://doi.org/10.1186/1471-2105-11-59
Song X, Zhang Y, Guo Y, Sun X, Wang Y (2020) Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data. IEEE Transactions on Evolutionary Computation Early Access, p 1–1
Spieth C, Streichert F, Speer N, Zell A (2005) Multi-objective model optimization for inferring gene regulatory networks . In: Coello Coello C, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization, lecture notes in computer science, vol. 3410, pp. 607–620. Springer berlin heidelberg, DOI https://doi.org/10.1007/978-3-540-31880-4_42
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102 (43):15,545–15,550
Sultana R, Showkat D, Samiullah M, Chowdhury AR (2014) Reconstructing gene regulatory network with enhanced particle swarm optimization. In: Loo CK, Yap KS, Wong KW, Teoh A, Huang K (eds) Neural information processing, pp 229-236. Springer International Publishing, Cham
Tatsis VA, Parsopoulos KE (2019) Dynamic parameter adaptation in metaheuristics using gradient approximation and line search. Applied Soft Computing 74:368–384. https://doi.org/10.1016/j.asoc.2018.09.034, http://www.sciencedirect.com/science/article/pii/S1568494618305519
Tilford CA, Siemers NO (2009) Gene set enrichment analysis. In: Protein networks and pathway analysis, pp. 99–121. Springer
Tominaga D, Koga N, Okamoto M (2000) Efficient numerical optimization algorithm based on genetic algorithm for inverse problem. In: Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary Computation, GECCO’00, pp 251-258. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences 177(22):5033–5049
Tsai KY, Wang FS (2005) Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21(7):1180–1188. https://doi.org/10.1093/bioinformatics/bti099
Voit EO (2000) Computational analysis of biochemical systems. a practical guide for biochemists and molecular biologists cambridge university press
Xu R, II DW, Frank R (2007) Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(4):681–692. https://doi.org/10.1109/TCBB.2007.1057
Zapotecas Martínez S, Coello Coello CA (2011) A Multi-objective Particle Swarm Optimizer Based on Decomposition. In: 2011 Genetic and evolutionary computation conference (GECCO’2011), pp 69-76. ACM Press, Dublin, Ireland
Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evol. Comp. 11(6):712–731
Zhang Y, Gong DW, Cheng J (2017) Multi-objective particle swarm optimization approach for cost-based feature selection in classification. IEEE/ACM Trans. Comput. Biol. Bioinformatics 14(1):64–75
Zhang Y, Gong D-W, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inform Sci 192:213–227. ISSN 0020-0255, https://doi.org/10.1016/j.ins.2011.06.004
Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. on Evol. Comp. 3(4):257–271
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been partially funded by the Spanish Ministry of Science and Innovation via Grant TIN2017-86049-R (AEI/FEDER, UE) and Andalusian PAIDI program with grant P18-RT-2799. José García-Nieto is the recipient of a Post-Doctoral fellowship of “Captación de Talento para la Investigación” Plan Propio at Universidad de Málaga.
Rights and permissions
About this article
Cite this article
Hurtado, S., García-Nieto, J., Navas-Delgado, I. et al. Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Appl Intell 51, 1972–1991 (2021). https://doi.org/10.1007/s10489-020-01891-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-020-01891-1