Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-objective Model Optimization for Inferring Gene Regulatory Networks

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3410))

Included in the following conference series:

Abstract

With the invention of microarray technology, researchers are able to measure the expression levels of ten thousands of genes in parallel at various time points of a biological process. The investigation of gene regulatory networks has become one of the major topics in Systems Biology. In this paper we address the problem of finding gene regulatory networks from experimental DNA microarray data. We suggest to use a multi-objective evolutionary algorithm to identify the parameters of a non-linear system given by the observed data. Currently, only limited information on gene regulatory pathways is available in Systems Biology. Not only the actual parameters of the examined system are unknown, also the connectivity of the components is a priori not known. However, this number is crucial for the inference process. Therefore, we propose a method, which uses the connectivity as an optimization objective in addition to the data dissimilarity (relative standard error - RSE) between experimental and simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T., Miyano, S., Kuhura, S.: Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 17–28 (1999)

    Google Scholar 

  2. Akutsu, T., Miyano, S., Kuhura, S.: Algorithms for identifying boolean networks and related biological networks based on matrix multiplication and fingerprint function. In: Proceedings of the fourth annual international conference on Computational molecular biology, Tokyo, Japan, pp. 8–14. ACM Press, New York (2000)

    Google Scholar 

  3. Ando, S., Sakamoto, E., Iba, H.: Evolutionary modeling and inference of gene network. Information Sciences 145(3-4), 237–259 (2002)

    MathSciNet  Google Scholar 

  4. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the, IEEE Int. Conf. on Evolutionary Computation, pp. 312–317. IEEE Service Center, Piscataway (1996)

    Chapter  Google Scholar 

  6. Herz, J.: Statistical issues in reverse engineering of genetic networks. In: Proceedings of the Pacific Symposium on Biocomputing (1998)

    Google Scholar 

  7. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S.: Combining microarrays and biological knowledge for estimating gene networks via bayesian networks. In: Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB 2003), pp. 104–113. IEEE, Los Alamitos (2003)

    Google Scholar 

  8. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)

    Google Scholar 

  9. Keedwell, E., Narayanan, A., Savic, D.: Modelling gene regulatory data using artificial neural networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2002), vol. 1, pp. 183–188 (2002)

    Google Scholar 

  10. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic netowrks using genetic algorithm and s-sytem. Bioinformatics 19(5), 643–650 (2003)

    Article  Google Scholar 

  11. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 3, pp. 18–29 (1998)

    Google Scholar 

  12. Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., Eguchi, Y.: Development of a system for the inference of large scale genetic networks. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 6, pp. 446–458 (2001)

    Google Scholar 

  13. Ono, I., Yoshiaki Seike, R., Ono, N., Matsui, M.: An evolutionary algorithm taking account of mutual interactions among substances for inference of genetic networks. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), pp. 2060–2067 (2004)

    Google Scholar 

  14. Pridgeon, C., Corne, D.: Genetic network reverse-engineering and network size; can we identify large grns? In: Proceedings of the Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2004), pp. 32–36 (2004)

    Google Scholar 

  15. Savageau, M.A.: 20 years of S-systems. In: Voit, E. (ed.) Canonical Nonlinear Modeling. S-systems Approach to Understand Complexity, New York, pp. 1–44. Van Nostrand Reinhold (1991)

    Google Scholar 

  16. Spieth, C., Streichert, F., Speer, N., Zell, A.: Iteratively inferring gene regulatory networks with virtual knockout experiments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 102–111. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Spieth, C., Streichert, F., Speer, N., Zell, A.: Optimizing topology and parameters of gene regulatory network models from time-series experiments. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 461–470. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Spieth, C., Streichert, F., Speer, N., Zell, A.: Utilizing an island model for ea to preserve solution diversity for inferring gene regulatory networks. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), pp. 146–151 (2004)

    Google Scholar 

  19. Streichert, F., Ulmer, H., Zell, A.: Evaluating a hybrid encoding and three crossover operators on the constrained portfolio selection problem. In: Proceedings of the 2004 Congress on Evolutionary Computation, pp. 932–939 (2004)

    Google Scholar 

  20. Thieffry, D., Thomas, R.: Qualitative analysis of gene networks. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 77–87 (1998)

    Google Scholar 

  21. Tominaga, D., Kog, N., Okamoto, M.: Efficient numeral optimization technique based on genetic algorithm for inverse problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 251–258 (2000)

    Google Scholar 

  22. Weaver, D., Workman, C., Stormo, G.: Modeling regulatory networks with weight matrices. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 4, pp. 112–123 (1999)

    Google Scholar 

  23. Yeung, M.K.S., Tegner, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Science USA 99, 6163–6168 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spieth, C., Streichert, F., Speer, N., Zell, A. (2005). Multi-objective Model Optimization for Inferring Gene Regulatory Networks. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics