Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Compatible Structures of Nonsymmetric Operads, Manin Products and Koszul Duality

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Various compatibility conditions among replicated copies of operations in a given algebraic structure have appeared in broad contexts in recent years. Taking a uniform approach, this paper presents an operadic study of compatibility conditions for nonsymmetric operads with unary and binary operations, and homogeneous quadratic and cubic relations. This generalizes the previous studies for binary quadratic operads. We consider three compatibility conditions, namely the linear compatibility, matching compatibility and total compatibility, with increasingly stronger restraints among the replicated copies. The linear compatibility is in Koszul duality to the total compatibility, while the matching compatibility is self dual. Further, each compatibility condition can be expressed in terms of either one or both of the two Manin square products. Finally it is shown that the operads defined by these compatibility conditions from the associative algebra and differential algebra are Koszul utilizing rewriting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

References

  1. Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, manin products and Rota-Baxter operators. Int. Math. Res. Not. IMRN 2013, 485–524 (2013)

    Article  MathSciNet  Google Scholar 

  2. Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10, 731–742 (1960)

    Article  MathSciNet  Google Scholar 

  3. Bershtein, M., Dotsenko, V., Khoroshkin, A.: Quadratic algebras related to the bi-Hamiltonian operad. Int. Math. Res. Not. IMRN 2007, rnm122 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bremner, M., Dotsenko, V.: Algebraic Operads: An Algorithmic Companion. Chapman and Hall/CRC, London (2016)

    Book  Google Scholar 

  5. Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. Invent. Math. 215, 1039–1156 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cariñena, J.F., Grabowski, J., Marmo, G.: Quantum bi-Hamiltonian systems, internat. J. Modern Phys. A. 15, 4797–4810 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Carlet, G., Posthuma, H., Shadrin, S.: Bihamiltonian cohomology of KdV brackets. Comm. Math. Phys. 341, 805–819 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Das, A.: Deformations of associative Rota-Baxter operators. J. Algebra 560, 144–180 (2020)

    Article  MathSciNet  Google Scholar 

  9. D’León, R.G.: On the free Lie algebra with multiple brackets. Adv. Appl. Math. 79, 37–97 (2016)

    Article  MathSciNet  Google Scholar 

  10. D’León, R.G., Wachs, M.: On the (co)homology of the poset of weighted partitions. Trans. Amer. Math. Soc. 368, 6779–6818 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dotsenko, V.: Compatible associative products and trees. Algebra Number Theory 3, 567–586 (2009)

    Article  MathSciNet  Google Scholar 

  12. Dotsenko, V., Khoroshkin, A.: Character formulas for the operad of two compatible brackets and for the bi-Hamiltonian operad. Funct. Anal. Appl. 41, 1–17 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dotsenko, V., Khoroshkin, A.: Gröbner bases for operads. Duke Math. J. 153, 363–396 (2010)

    Article  MathSciNet  Google Scholar 

  14. Ebrahimi-Fard, K.E., Guo, L.: On products and duality of binary, quadratic, regular operads. J. Pure Appl. Algebra 200, 293–317 (2005)

    Article  MathSciNet  Google Scholar 

  15. Foissy, L.: Algebraic structures on typed decorated rooted trees. Symmetry, Integr. Geom. Methods Appl. 17, 086 (2021)

    MathSciNet  Google Scholar 

  16. Foissy, L., Manchon, D., Zhang, Y.: Families of algebraic structures. arXiv:2005.05116

  17. Gao, X., Guo, L., Zhang, H.: Compatible structures of operads by polarization, their Koszul duality and Manin products. arXiv:2311.11394

  18. Gao, X., Guo, L., Zhang, Y.: Commutative matching Rota-Baxter operators, shuffle products with decorations and matching Zinbiel algebras. J. Algebra 586, 402–432 (2021)

    Article  MathSciNet  Google Scholar 

  19. Getzler, E.: Operads and moduli spaces of genus 0 Riemann surfaces. In: The Moduli Space of Curves(Texel Island,: Progr. Math. 129. Birkhuser, Boston, vol. 1995, pp. 199–230 (1994)

  20. Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76, 203–272 (1994)

    Article  MathSciNet  Google Scholar 

  21. Gubarev, V., Kolesnikov, P.S.: On embedding of dendriform algebras into Rota-Baxter algebras. Cent. Eur. J. Math. 11, 226–245 (2013)

    MathSciNet  Google Scholar 

  22. Guo, L.: An Introduction to Rota-Baxter Algebra. International Press, Vienna (2012)

    Google Scholar 

  23. Guo, L., Gustavson, R., Li, Y.: An algebraic study of Volterra integral equations and their operator linearity. J. Algebra 595, 398–433 (2022)

    Article  MathSciNet  Google Scholar 

  24. Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press, Cambridge (1973)

    Google Scholar 

  25. Lazarev, A., Sheng, Y., Tang, R.: Deformations and homotopy theory of relative Rota-Baxter Lie algebras. Comm. Math. Phys. 383, 595–631 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, S.Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies I: a special case. Comm. Math. Phys. 324, 897–935 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Loday, J.-L.: On the operad of associative algebras with derivation. Georgian Math. J. 17, 347–372 (2010)

    Article  MathSciNet  Google Scholar 

  28. Loday, J.-L., Vallette, B.: Algebraic Operads. Springer, Berlin (2012)

    Book  Google Scholar 

  29. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Makhlouf, A., Silvestrov, S.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2, 51–64 (2008)

    Article  MathSciNet  Google Scholar 

  31. Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. Amer. Math. Soc., (2002)

  32. Márquez, S.: Compatible associative bialgebras. Comm. Algebra 46, 3810–3832 (2018)

    Article  MathSciNet  Google Scholar 

  33. Odesskii, A.V., Sokolov, V.V.: Algebraic structures connected with pairs of compatible associative algebras. Int Math Res Not. IMRN. 2006, 1–35 (2006)

    Google Scholar 

  34. Pei, J., Bai, C., Guo, L., Ni, X.: Replicating of binary operads, Koszul duality, Manin products and average operators. In: “New Trends in Algebras and Combinatorics" (Proceedings of ICAC2017), pp. 317–353, World Scientific, (2020)

  35. Polishchuk, A., Positselski, L.: Quadratic Algebras. American Mathematical Society, Providence (2005)

    Book  Google Scholar 

  36. Strohmayer, H.: Operads of compatible structures and weighted partitions. J. Pure Appl. Algebra 212, 2522–2534 (2008)

    Article  MathSciNet  Google Scholar 

  37. Sokolov, V.: Algebraic structures related to integrable differential equations. arXiv:1711.10613 (2017)

  38. Tang, R., Bai, C., Guo, L., Sheng, Y.: Deformations and their controlling cohomologies of O-operators. Comm. Math. Phys. 368, 665–700 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208, 699–725 (2007)

    Article  MathSciNet  Google Scholar 

  40. Vallette, B.: Manin products, Koszul duality, Loday algebras and Deligne conjecture. J. Reine Angew. Math. 620, 105–164 (2008)

    MathSciNet  Google Scholar 

  41. Wu, M.: Double constructions of compatible associative algebras. Algebra Colloq. 26, 479–494 (2019)

    Article  MathSciNet  Google Scholar 

  42. Zhang, Y.: Homotopy transfer theorem for linearly compatible di-algebras. J. Homotopy Relat. Struct. 8, 141–150 (2013)

    Article  MathSciNet  Google Scholar 

  43. Zhang, Y., Bai, C., Guo, L.: The category and operad of matching dialgebras. Appl. Categ. Struct. 21, 851–865 (2013)

    Article  MathSciNet  Google Scholar 

  44. Zhang, Y., Bai, C., Guo, L.: Totally compatible associative and Lie dialgebras, tridendriform algebras and PostLie algebras. Sci. China Math. 57, 259–273 (2014)

    Article  MathSciNet  Google Scholar 

  45. Zhang, Y., Gao, X., Guo, L.: Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras. J. Algebra 552, 134–170 (2020)

    Article  MathSciNet  Google Scholar 

  46. Zinbiel, G.W.: Encyclopedia of types of algebras 2010. In: “Operads and Universal Algebra" Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 9, pp. 217–298. (2012) World Scientific

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12071191), the Innovative Fundamental Research Group Project of Gansu Province (23JRRA684) and Natural Science Project of Gansu Province (No. 22JR11RA138). The authors thank the referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guo.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Nicola Gambino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Gao, X. & Guo, L. Compatible Structures of Nonsymmetric Operads, Manin Products and Koszul Duality. Appl Categor Struct 32, 2 (2024). https://doi.org/10.1007/s10485-023-09760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10485-023-09760-x

Keywords

Mathematics Subject Classification

Navigation