Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Meet-Semilattice Congruences on a Frame

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The congruence lattice of a frame has long been an object of considerable interest, not least because it turns out to be a frame itself. Perhaps more surprisingly congruence lattices of, for instance, \(\sigma \)-frames, \(\kappa \)-frames and some partial frames also turn out to be frames. The situation for congruences of a meet-semilattice is notably different. In this paper we analyze the meet-semilattice congruence lattices of arbitrary frames and compare them with the corresponding lattices of frame congruences. In the course of this, we provide a structure theorem as well as many examples and counter-examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)

    MATH  Google Scholar 

  2. Banaschewski, B.: Another look at the localic Tychonoff theorem. Comment. Math. Univ. Carolinae 29(4), 647–656 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Banaschewski, B.: Lectures on Frames. University of Cape Town, Cape Town (1988)

    MATH  Google Scholar 

  4. Banaschewski, B.: \(\sigma \)-frames, unpublished manuscript. http://mathcs.chapman.edu/CECAT/members/Banaschewski_publications.html (1980). Accessed 25 Nov 2017

  5. Banaschewski, B., Gilmour, C.R.A.: Realcompactness and the cozero part of a frame. Appl. Categ. Struct. 9, 395–417 (2001)

    Article  MathSciNet  Google Scholar 

  6. Erné, M., Zhao, D.: Z-join spectra of Z-supercompactly generated lattices. Appl. Categ. Struct. 9(1), 41–63 (2001)

    Article  MathSciNet  Google Scholar 

  7. Escardó, M.H.: Joins in the frame of nuclei. Appl. Categ. Struct. 11, 117–124 (2003)

    Article  MathSciNet  Google Scholar 

  8. Frith, J.L.: Structured frames. Ph.D. Thesis, University of Cape Town (1987)

  9. Frith, J., Schauerte, A.: An asymmetric characterization of the congruence frame. Topol. Appl. 158(7), 939–944 (2011)

    Article  MathSciNet  Google Scholar 

  10. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (I). Categ. Gen. Alg. Struct. Appl. 2(1), 1–21 (2014)

    MATH  Google Scholar 

  11. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (II). Categ. Gen. Alg. Struct. Appl. 2(1), 23–35 (2014)

    MATH  Google Scholar 

  12. Frith, J., Schauerte, A.: The Stone–Čech compactification of a partial frame via ideals and cozero elements. Quaest. Math. 39(1), 115–134 (2016)

    Article  MathSciNet  Google Scholar 

  13. Frith, J., Schauerte, A.: Completions of uniform partial frames. Acta Math. Hung. 147(1), 116–134 (2015)

    Article  MathSciNet  Google Scholar 

  14. Frith, J., Schauerte, A.: Coverages give free constructions for partial frames. Appl. Categ. Struct 25(3), 303–321 (2017)

    Article  MathSciNet  Google Scholar 

  15. Frith, J., Schauerte, A.: Compactifications of partial frames via strongly regular ideals. Math. Slovaca (2016, accepted)

  16. Frith, J., Schauerte, A.: One-point compactifications and continuity for partial frames. Categ. Gen. Algebr. Struct. Appl. 7, 57–88 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Frith, J., Schauerte, A.: The congruence frame and the Madden quotient for partial frames (submitted)

  18. Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    Article  MathSciNet  Google Scholar 

  19. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  20. Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck, vol. 309. American Mathematical Society, Providence (1984)

    MATH  Google Scholar 

  21. Klinke, O.: A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure. Algebra Universalis 71, 55–64 (2014)

    Article  MathSciNet  Google Scholar 

  22. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)

    Book  Google Scholar 

  23. Madden, J.J.: \(\kappa \)-frames. J. Pure Appl. Algebra 70, 107–127 (1991)

    Article  MathSciNet  Google Scholar 

  24. Papert, D.: Congruence relations in semi-lattices. J. Lond. Math. Soc. 39, 723–729 (1964)

    Article  MathSciNet  Google Scholar 

  25. Paseka, J.: Covers in generalized frames. In: Chajda, I. et al. (eds.) General Algebra and Ordered Sets (Horni Lipova 1994), pp. 84–99. Palacky University Olomouc, Olomouc.

  26. Picado, J., Pultr, A.: Frames and Locales. Springer, Basel (2012)

    Book  Google Scholar 

  27. Plewe, T.: Higher order dissolutions and Boolean coreflections of locales. J. Pure Appl. Algebra 154, 273–293 (2000)

    Article  MathSciNet  Google Scholar 

  28. Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168, 309–326 (2002)

    Article  MathSciNet  Google Scholar 

  29. Simmons, H.: A framework for topology. Stud. Logic Found. Math. 96, 239–251 (1978)

    Article  MathSciNet  Google Scholar 

  30. Simmons, H.: Spaces with Boolean assemblies. Colloq. Math. 43, 23–39 (1980)

    Article  MathSciNet  Google Scholar 

  31. Zenk, E.R.: Categories of partial frames. Algebra Univers. 54, 213–235 (2005)

    Article  MathSciNet  Google Scholar 

  32. Zhao, D.: Nuclei on \(Z\)-frames. Soochow J. Math. 22(1), 59–74 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Zhao, D.: On projective \(Z\)-frames. Can. Math. Bull. 40(1), 39–46 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Frith.

Additional information

Communicated by Bernhard Banaschewski.

Dedicated with appreciation to Bob Lowen on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frith, J., Schauerte, A. Meet-Semilattice Congruences on a Frame. Appl Categor Struct 26, 997–1013 (2018). https://doi.org/10.1007/s10485-018-9521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-018-9521-7

Keywords

Mathematics Subject Classification

Navigation