Abstract
The congruence lattice of a frame has long been an object of considerable interest, not least because it turns out to be a frame itself. Perhaps more surprisingly congruence lattices of, for instance, \(\sigma \)-frames, \(\kappa \)-frames and some partial frames also turn out to be frames. The situation for congruences of a meet-semilattice is notably different. In this paper we analyze the meet-semilattice congruence lattices of arbitrary frames and compare them with the corresponding lattices of frame congruences. In the course of this, we provide a structure theorem as well as many examples and counter-examples.
Similar content being viewed by others
References
Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)
Banaschewski, B.: Another look at the localic Tychonoff theorem. Comment. Math. Univ. Carolinae 29(4), 647–656 (1988)
Banaschewski, B.: Lectures on Frames. University of Cape Town, Cape Town (1988)
Banaschewski, B.: \(\sigma \)-frames, unpublished manuscript. http://mathcs.chapman.edu/CECAT/members/Banaschewski_publications.html (1980). Accessed 25 Nov 2017
Banaschewski, B., Gilmour, C.R.A.: Realcompactness and the cozero part of a frame. Appl. Categ. Struct. 9, 395–417 (2001)
Erné, M., Zhao, D.: Z-join spectra of Z-supercompactly generated lattices. Appl. Categ. Struct. 9(1), 41–63 (2001)
Escardó, M.H.: Joins in the frame of nuclei. Appl. Categ. Struct. 11, 117–124 (2003)
Frith, J.L.: Structured frames. Ph.D. Thesis, University of Cape Town (1987)
Frith, J., Schauerte, A.: An asymmetric characterization of the congruence frame. Topol. Appl. 158(7), 939–944 (2011)
Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (I). Categ. Gen. Alg. Struct. Appl. 2(1), 1–21 (2014)
Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (II). Categ. Gen. Alg. Struct. Appl. 2(1), 23–35 (2014)
Frith, J., Schauerte, A.: The Stone–Čech compactification of a partial frame via ideals and cozero elements. Quaest. Math. 39(1), 115–134 (2016)
Frith, J., Schauerte, A.: Completions of uniform partial frames. Acta Math. Hung. 147(1), 116–134 (2015)
Frith, J., Schauerte, A.: Coverages give free constructions for partial frames. Appl. Categ. Struct 25(3), 303–321 (2017)
Frith, J., Schauerte, A.: Compactifications of partial frames via strongly regular ideals. Math. Slovaca (2016, accepted)
Frith, J., Schauerte, A.: One-point compactifications and continuity for partial frames. Categ. Gen. Algebr. Struct. Appl. 7, 57–88 (2017)
Frith, J., Schauerte, A.: The congruence frame and the Madden quotient for partial frames (submitted)
Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)
Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck, vol. 309. American Mathematical Society, Providence (1984)
Klinke, O.: A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure. Algebra Universalis 71, 55–64 (2014)
Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
Madden, J.J.: \(\kappa \)-frames. J. Pure Appl. Algebra 70, 107–127 (1991)
Papert, D.: Congruence relations in semi-lattices. J. Lond. Math. Soc. 39, 723–729 (1964)
Paseka, J.: Covers in generalized frames. In: Chajda, I. et al. (eds.) General Algebra and Ordered Sets (Horni Lipova 1994), pp. 84–99. Palacky University Olomouc, Olomouc.
Picado, J., Pultr, A.: Frames and Locales. Springer, Basel (2012)
Plewe, T.: Higher order dissolutions and Boolean coreflections of locales. J. Pure Appl. Algebra 154, 273–293 (2000)
Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168, 309–326 (2002)
Simmons, H.: A framework for topology. Stud. Logic Found. Math. 96, 239–251 (1978)
Simmons, H.: Spaces with Boolean assemblies. Colloq. Math. 43, 23–39 (1980)
Zenk, E.R.: Categories of partial frames. Algebra Univers. 54, 213–235 (2005)
Zhao, D.: Nuclei on \(Z\)-frames. Soochow J. Math. 22(1), 59–74 (1996)
Zhao, D.: On projective \(Z\)-frames. Can. Math. Bull. 40(1), 39–46 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Bernhard Banaschewski.
Dedicated with appreciation to Bob Lowen on the occasion of his 70th birthday.
Rights and permissions
About this article
Cite this article
Frith, J., Schauerte, A. Meet-Semilattice Congruences on a Frame. Appl Categor Struct 26, 997–1013 (2018). https://doi.org/10.1007/s10485-018-9521-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-018-9521-7
Keywords
- Complete lattice
- Frame
- Partial frame
- \(\mathcal {S}\)-frame
- Frame congruence
- Meet-semilattice congruence
- Complements