Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Coverages Give Free Constructions for Partial Frames

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Defining objects using generators and relations has seen substantial application in the theory of frames. It is the aim of this paper to establish such a technique for partial frames, thus making it available in a variety of contexts. A partial frame is a meet-semilattice in which certain designated subsets are required to have joins, and finite meets distribute over these. The designated subsets in question are specified by means of a so-called selection function. The theory is general enough to include, as examples, bounded distributive lattices, σ-frames, κ-frames and indeed frames, but a small collection of elementary axioms suffices to describe the selection functions and thus the designated subsets. In this paper we are concerned with establishing techniques for constructing objects given certain generators and the relations that they should satisfy. Our method involves embedding the generators in an appropriate meet-semilattice, moving to the free partial frame over that meet-semilattice, and then using the relations to form a quotient with the required joins. We use a modification of Johnstone’s coverages on meet-semilattices [12] to construct partial frames freely generated by sites. We conclude with a number of applications, including the construction of coproducts for partial frames and a general method for freely adjoining complements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)

  2. Banaschewski, B.: Another look at the Localic Tychonoff Theorem, Comment. Math. Univ. Carolinae 29(4), 647–656 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Banaschewski, B.: The Frame Envelope of a σ-Frame. Quaest. Math. 16(1), 51–60 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banaschewski, B.: The Real Numbers in Pointfree Topology, vol. 12. Universidade de Coimbra, Departamento de Matemática, Coimbra (1997)

    MATH  Google Scholar 

  5. Banaschewski, B., Gilmour, C.R.A.: Realcompactness and the Cozero Part of a Frame, Appl. Categ. Struct. 9, 395–417 (2001)

    Article  MATH  Google Scholar 

  6. Dowker, C.H., Strauss, D.: Sums in the Category of Frames, Houston J. Math. 3(1), 7–15 (1977)

  7. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (I). Categ. General Alg. Struct. Appl. 2(1), 1–21 (2014)

  8. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (II). Categ. General Alg. Struct. Appl. 2(1), 23–35 (2014)

    MATH  Google Scholar 

  9. Frith, J., Schauerte, A.: The Stone-Čech Compactification of a Partial Frame via Ideals and Cozero Elements. Quaestiones Math. (2014)

  10. Frith, J., Schauerte, A.: Completions of uniform partial frames. Acta Math. Hungarica (2015)

  11. Isbell, J.R.: Atomless Parts of Spaces. Math. Scand. 31, 5–32 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  13. Joyal, A., Tierney, M.: An Extension of the Galois Theory of Grothendieck, Mem. Amer. Math. Soc. Vol. 309 Amer. Math. Soc. Providence RI (1984)

  14. Klinke, O.: A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure. Algebra Univ. 71, 55–64 (2014)

  15. Kříž, I.: A Constructive Proof of the Tychonoff’s Theorem for Locales. Comment. Math. Univ. Carolinae 26(3), 619–630 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Mac Lane, S.: Categories for the Working Mathematician. Springer-Verlag, Heidelberg (1971)

    Book  MATH  Google Scholar 

  17. Madden, J.J.: κ-frames. J. Pure Appl. Algebra 70, 107–127 (1991)

  18. Paseka, J.: Covers in Generalized Frames. In: General Algebra and Ordered Sets (Horni Lipova 1994), Palacky Univ. Olomouc, Olomouc, pp. 84–99 (1994)

  19. Picado, J., Pultr, A.: Frames and Locales. Springer, Basel (2012)

    Book  MATH  Google Scholar 

  20. Picado, J., Pultr, A.: Notes on the product of locales. Math. Slovaca 65, 247–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Plewe, T.: Higher order Dissolutions and Boolean Coreflections of Locales, J. Pure Appl. Algebra 154, 273–293 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168, 309–326 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Simmons, H.: Spaces with Boolean assemblies. Colloq. Math. 43, 23–39 (1980)

    MathSciNet  MATH  Google Scholar 

  24. Vickers, S.: Topology via Logic, vol. 5. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  25. Wigner, D.: Two notes on frames. J. Austral. Math. Soc. A 28, 257–268 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zenk, E.R.: Categories of Partial Frames. Algebra Univ. 54, 213–235 (2005)

  27. Zhao, D.: Nuclei on Z-Frames, Soochow. J. Math. 22(1), 59–74 (1996)

  28. Zhao, D.: On Projective Z-frames. Canad. Math. Bull 40(1), 39–46 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneliese Schauerte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frith, J., Schauerte, A. Coverages Give Free Constructions for Partial Frames. Appl Categor Struct 25, 303–321 (2017). https://doi.org/10.1007/s10485-015-9417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-015-9417-8

Keywords

Mathematics Subject Classification (2010)

Navigation