Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Design and simulation of fourth order low-pass Gm-C filter with novel auto-tuning circuit in 90 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A tunable high-frequency operational transconductance amplifier (OTA) is presented along with its application in the implementation of a Gm-C filter. The OTA is tuned by varying the negative resistance produced by a positive feedback at the output. Post-layout simulation results (using TSMC 90 nm CMOS technology and a 1-V supply voltage) show that the differential DC gain, common-mode gain and OTA unity gain frequency are 34 dB, −26 dB and 10 GHz, respectively. Moreover, for precise control of filter performance, an auto-tuning circuit is presented to adjust the filter cutoff frequency at low power consumption (i.e., 0.6 mW, about 16.3% of the total circuit power consumption). The filter has a cutoff frequency of 1 GHz with a group delay variation less than 6% up to 1.3 fc. The size of filter is 0.040 × 0.023mm2 and the third order intermodulation (IM3) value at cutoff frequency is −37 dB. The Monte Carlo simulation results are presented for predicting the manufacturing process errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Galan, J., Pedro, M., Sanchez-Rodriguez, T., Munoz, F., Carvajal, R. G., & Lopez-Martin, A. (2013). A very linear low-pass filter with automatic frequency tuning. IEEE Transactions on Very Large Scale Integration (VLSI) System, 21(1), 182–187.

    Article  Google Scholar 

  2. Abdulaziz, M., Ahmad, W., Tormanen, M., & Sjoland, H. (2017). A linearization technique for differential OTAs. IEEE Transactions on Circuits and Systems II, 64(9), 1002–1006.

    Google Scholar 

  3. Rezaei, F. (2017). Linearity enhancement in the entire tuning range of CMOS OTA using a new tune compensated source degeneration technique. Microelectronics Journal, 66, 128–135.

    Article  Google Scholar 

  4. Gak, J., Miguez, M. R., & Arnaud, A. (2014). Nanopower OTAs with improved linearity and low input offset using bulk degeneration. IEEE Transactions on Circuits and Systems-I, 61(3), 689–698.

    Article  Google Scholar 

  5. Nauta, B. (1992). A CMOS transconductance-C filter technique for very high frequencies. IEEE Journal of Solid-State Circuits, 27(2), 142–153.

    Article  Google Scholar 

  6. Rezaei, F., & Azhari, S. J. (2015). A new controllable adaptive biasing linearization technique for a CMOS OTA and its application to tunable Gm-C filter design. Microelectronics Journal, 46, 810–818.

    Article  Google Scholar 

  7. Mincey, J. S., Briseno-Vidrios, C., Silva-Martinez, J., & Rodenbeck, C. T. (2017). Low-power Gm-C filter employing current-reuse differential difference amplifiers. IEEE Transactions on Circuits and Systems II, 64(2), 635–639.

    Google Scholar 

  8. Sharan, T., Chetri, P., & Bhadauria, V. (2018). Ultra-low-power bulk-driven fully differential subthreshold OTAs with partial positive feedback for Gm-C filters. Analog Integrated Circuits and Signal Processing, 94(3), 427–447.

    Article  Google Scholar 

  9. Kumar, T. B., Kar, S. K., & Boolchandani, D. (2020). A wide linear range CMOS OTA and its application in continuous-time filters applications. Springer, Analog Integrated Circuits and Signal Processing, 103, 283–290.

    Article  Google Scholar 

  10. Lo, T. Y., & Hung, C. C. (2011). A 1 GHz equiripple low-pass filter with a high-speed automatic tuning scheme. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(2), 175–181.

    Article  Google Scholar 

  11. Abdolmaleki, M., Dousti, M., & Tavakoli, M. B. (2019). Design and simulation of tunable low-pass Gm-C filter with 1 GHz cutoff frequency based on CMOS inverters for high speed telecommunication applications. Springer, Analog Integrated Circuits and Signal Processing, 100(2), 279–286.

    Article  Google Scholar 

  12. Rodovalho, L.H. (2020). Push–pull based operational transconductor amplifier topologies for ultra low voltage supplies. Analog Integrated Circuits and Signal Processing, 1–14.

  13. Sharan, T., & Bhadauria, V. (2016). Sub-threshold, cascode compensated, bulk-driven OTAs with enhanced gain and phase-margin. Microelectronics Journal, 54, 150–165.

    Article  Google Scholar 

  14. Ghaemnia, A., & Hashemipour, O. (2019). An ultra-low power high gain CMOS OTA for biomedical applications. Analog Integrated Circuits and Signal Processing, 99(3), 529–537.

    Article  Google Scholar 

  15. Garradhi, K., Hassen, N., Ettaghzouti, T., & Besbes, K. (2018). Realization of current-mode biquadratic filter employing multiple output OTAs and MO-CCII. AUE, 83, 168–179.

    Google Scholar 

  16. Li, Y., Wang, C., Zhu, B., & Hu, Z. (2017). Universal current-mode filters based on OTA and MO-CCCA. IETE Journal of Research, 64(6), 897–906.

    Article  Google Scholar 

  17. Bashir, M., Patri, S. R., & KrishanPrasad, K. S. R. (2017). 0.5 V, high gain two stage operational amplifier with enhanced transconductance. International Journal of Electronics Letters, 6(1), 80–89.

    Article  Google Scholar 

  18. Elamien, M. B., & Mahmoud, S. A. (2018). On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high-frequency applications. Analog Integrated Circuits and Signal Processing, 97(2), 225–241.

    Article  Google Scholar 

  19. Silva-Martinez, J., Adut, J., Rocha-Perez, J. M., Robinson, M., & Rokhsaz, S. (2003). A 60 mW, 200 MHz continuous-time seventh-order linear phase filter with on-chip automatic tuning system. IEEE Journal of Solid-State Circuits, 38(2), 216–225.

    Article  Google Scholar 

  20. Lechevallier, J., Struiksma, R., Sherry, H., Catheli, A., Klumperink, E, & Nauta, B. (2015). A forward-body-bias tuned 450 MHz Gm-C 3rd-order low-pass filter in 28 nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V supply. in IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Dousti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolmaleki, M., Dousti, M. & Tavakoli, M.B. Design and simulation of fourth order low-pass Gm-C filter with novel auto-tuning circuit in 90 nm CMOS. Analog Integr Circ Sig Process 107, 451–461 (2021). https://doi.org/10.1007/s10470-020-01785-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01785-9

Keywords

Navigation