Abstract
This paper proposes a novel highly linear digitally programmable fully differential operational transconductance amplifier (DPOTA) circuit. Two versions of the proposed DPOTA structure are designed. The first version is optimized for high-frequency operation with current division networks designated to 3-bit control code words. On the other hand, the second version is optimized for low-frequency operation with 4-bit control code words. The third-order harmonic distortion (HD3) of the first DPOTA version remains below − 66 dB up to 0.4 V differential input voltage at 10 MHz frequency. The second DPOTA version achieved HD3 of − 70 dB with an amplitude of 20 mVp–p and at 100 Hz frequency. The proposed circuits are designed and simulated in 90 nm CMOS model, BSIM4 (level 54) under a balanced 1.2 V supply voltage.
Similar content being viewed by others
References
Hung, C. C., Halonen, K. A., Ismail, M., Porra, V., & Hyogo, A. (1997). A low-voltage, low-power CMOS fifth-order elliptic GM-C filter for baseband mobile, wireless communication. IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 584–593.
Elamien, M. B., & Mahmoud, S. A. (2017). Wide digitally tunable lowpass filter for biomedical and wireless applications. Electronics Letters, 54(3), 124–126.
Galan, J., Carvajal, R. G., Torralba, A., Munoz, F., & Ramirez-Angulo, J. (2005). A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(2), 283–291.
Ismail, M., & Fiez, T. (1994). Analog VLSI: Signal and information processing. New York: McGraw-Hill.
Mahmoud, S. A., & Soliman, E. A. (2013). Multi-standard receiver baseband chain using digitally programmable OTA based on CCII and current division networks. Journal of Circuits, Systems and Computers, 22(04), 1–5.
Madian, A. H., Mahmoud, S. A., & Soliman, A. M. (2006). New 1.5-V CMOS second generation current conveyor based on wide range transconductor. Analog Integrated Circuits and Signal Processing, 49(3), 267–279.
Mahmoud, S. A., & Soliman, A. M. (1999). New CMOS fully differential difference transconductors and application to fully differential filters suitable for VLSI. Microelectronics journal, 30(2), 169–192.
Bialko, M., & Newcomb, R. W. (1971). Generation of all finite linear circuits using the integrated DVCCS. IEEE Transactions on Circuit Theory, 18(6), 733–736.
Nedungadi, A., & Viswanathan, T. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, 31(10), 891–894.
Silva-Martinez, J., Steyaert, M. S., & Sansen, W. M. (1991). A large-signal very low-distortion transconductor for high-frequency continuous-time filters. IEEE Journal of Solid State Circuits, 26(7), 946–955.
Wang, Y. T., Lu, F., & Abidi, A. A. (1989). A 12.5 MHz CMOS continuous time bandpass filter. In IEEE 36th international solid-state circuits conference (ISSCC), technical papers (pp. 198–199).
Krummenacher, F., & Joehl, N. (1988). A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE Journal of Solid State Circuits, 23(3), 750–758.
Pennock, J. L. (1985). CMOS triode transconductor for continuous-time active integrated filters. Electronics Letters, 21(18), 817–818.
Wong, S. L. (1989). Novel drain-biased transconductance building blocks for continuous-time filter applications. Electronics Letters, 25(2), 100–101.
Gatti, U., Maloberti, F., Palmisano, G., & Torelli, G. (1994). CMOS triode-transistor transconductor for high-frequency continuous-time filters. IEE Proceedings Circuits, Devices and Systems, 141(6), 462–468.
Tsividis, Y., Czarnul, Z., & Fang, S. C. (1986). MOS transconductors and integrators with high linearity. Electronics Letters, 22(5), 245–246.
Gopinathan, V., Tsividis, Y. P., Tan, K. S., & Hester, R. K. (1990). Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE Journal of Solid State Circuits, 25(6), 1368–1378.
Mahmoud, S. A., & Soliman, A. M. (1997). A CMOS programmable balanced output transconductor for analogue signal processing. International Journal of Electronics, 82(6), 605–620.
Elamien, M. B., & Mahmoud, S. A. (2017). Multi-Standard lowpass filter for baseband chain using highly linear digitally programmable OTA. In IEEE 40th international conference on telecommunications and signal processing (TSP2017), Barcelona (pp. 298–301).
Elamien, M. B., & Mahmoud, S. A. (2017). Analysis and design of a highly linear CMOS OTA for portable biomedical applications in 90 nm CMOS. Microelectronics Journal, 70, 72–80.
Sanchez-Sinencio, E., & Silva-Martinez, J. (2000). CMOS transconductance amplifiers, architectures and active filters: A tutorial. IEE Proceedings Circuits Devices and Systems, 147(1), 3–12.
Rezzi, F., Baschirotto, A., & Castello, R. (1995). A 3 V 12–55 MHz BiCMOS pseudo-differential continuous-time filter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(11), 896–903.
Smith, S. L., & Snchez-Sinencio, E. (1996). Low voltage integrators for high-frequency CMOS filters using current mode techniques. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43(1), 39–48.
Duque-Carrillo, J. F. (1993). Control of the common-mode component in CMOS continuous-time fully differential signal processing. Analog Integrated Circuits and Signal Processing, 4(2), 131–140.
Kuo, K. C., & Leuciuc, A. (2001). A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(10), 937–943.
Popa, C., & Mitrea, O. (2001). Constant gm rail-to-rail CMOS input stage with improved linearity. In Proceedings of the 2nd international symposium on image and signal processing and analysis (ISPA2001), Pula (pp. 511–515).
Elamien, M. B., & Mahmoud, S. A. (2016). A linear CMOS balanced output transconductor using double differential pair with source degeneration and adaptive biasing. In IEEE 59th international midwest symposium on circuits and systems (MWSCAS), 16–19 October, Abu Dhabi (pp. 1–4).
Mahmoud, S. A. (2004). A low voltage CMOS floating resistor. In IEEE international conference on electrical, electronic and computer engineering, ICEEC’04, Cairo, Egypt (pp. 453–456).
Chen, J., Sanchez-Sinencio, E., & Silva-Martinez, J. (2006). Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(3), 499–510.
Leung, B. (2011). VLSI for wireless communication. Berlin: Springer.
Johns, D. A., & Martin, K. (2008). Analog integrated circuit design. Hoboken: Wiley.
Elamien, M. B., & Mahmoud, S. A. (2016). A 138 dB-CMRR low power instrumentation amplifier with programmable gain for EEG. In UAE Graduate Students Research conference (UAE GSRC2016), Abu Dhabi.
Mahmoud, S. A., Bamakhramah, A., & Al-Tunaiji, S. A. (2013). Low-noise low-pass filter for ECG portable detection systems with digitally programmable range. Circuits, Systems, and Signal Processing, 32(5), 2029–2045.
Mahmoud, S. A., Hashiesh, M. A., & Soliman, A. M. (2005). Low-voltage digitally controlled fully differential current conveyor. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(10), 2055–2064.
Rezaei, F., & Azhari, S. J. (2015). Transconductor linearization based on adaptive biasing of source-degenerative MOS transistors. Circuits, Systems, and Signal Processing, 34(4), 1149–1165.
Rezaei, F. (2017). Linearity enhancement in the entire tuning range of CMOS OTA using a new tune compensated source degeneration technique. Microelectronics Journal, 66, 128–135.
Elamien, M. B., & Mahmoud, S. A. (2017). A 1 mhz-10.2 MHz bw / 0 db–70 db gain dpota-based baseband chain receiver. In IEEE international SoC design conference (ISOCC2017), 5–8 November, Seoul, Korea.
Elamien, M. B., & Mahmoud, S. A. (2017). A highly linear dpota-based configurable analog front-end for EXG (EEG, ECG, and EMG). In IEEE international SoC design conference (ISOCC2017), 5–8 November, Seoul, Korea.
Elamien, M. B., & Mahmoud, S. A. (2017). Third-order elliptic lowpass filter for multi-standard baseband chain using highly linear digitally programmable ota. In International conference on applied electronics and engineering (ICAEE2017), 7–8 August, Kuching, Sarawak, Malaysia.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elamien, M.B., Mahmoud, S.A. On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high-frequency applications. Analog Integr Circ Sig Process 97, 225–241 (2018). https://doi.org/10.1007/s10470-018-1128-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10470-018-1128-2