Abstract
Poisson-Nernst-Planck equations are widely used to describe the electrodiffusion of ions in a solvated biomolecular system. An error estimate in H1 norm is obtained for a piecewise finite element approximation to the solution of the nonlinear steady-state Poisson-Nernst-Planck equations. Some superconvergence results are also derived by using the gradient recovery technique for the equations. Numerical results are given to validate the theoretical results. It is also numerically illustrated that the gradient recovery technique can be successfully applied to the computation of the practical ion channel problem to improve the efficiency of the external iteration and save CPU time.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Andersen, O.S.: Ion movement through gramicidin a channels interfacial polarization effects on single-channel current measurements. Biophys. J. 41(2), 135–146 (1983)
Brandts, J., KŘÍžEK, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23(3), 489–505 (2003)
Babuška, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K., Copps, K.: Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Meth. Eng. 37(7), 1073–1123 (1994)
Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part i: Grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)
Cao, W.M.: Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes. Math. Comput. 84(291), 89–117 (2015)
Cardenas, A.E., Coalson, R.D., Kurnikova, M.G.: Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin a channel conductance. Biophys. J. 79(1), 80–93 (2000)
Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. i: low order conforming, nonconforming, and mixed FEM. Math. Comput. 71(239), 945–969 (2002)
Chen, C.M.: Superconvergence and extrapolation of the finite element approximations to quasilinear elliptic problems. Northeastern Math. J. 2, 228–236 (1986)
Chen, J., Wang, D., Du, Q.: Linear finite element superconvergence on simplicial meshes. Math. Comp. 83, 2161–2185 (2014)
Chen, L.: Superconvergence of tetrahedral linear finite elements. Int. J. Numer. Anal. Model. 3(3), 273–282 (2006)
Chen, M., Lu, B.Z.: TMSMesh: a robust method for molecular surface mesh generation using a trace technique. J. Chem. Theory Comput. 7(1), 203–212 (2011)
Chen, Y., Wu, L.: Second-Order Elliptic Equations and Elliptic Systems. Science Press, Beijing (1991). (in Chinese)
Cohen, H., Cooley, J.W.: The numerical solution of the time-dependent Nernst-Planck equations. Biophys. J. 5(2), 145–162 (1965)
Du, L., Yan, N.N.: Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes. Adv. Comput. Math. 14(2), 175–193 (2001)
Gao, H.D., He, D.D.: Linearized conservative finite element methods for the Nernst-Planck-Poisson equations. J Sci. Comput. 72(3), 1269–1289 (2017)
Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE T. Electron Dev. 11(10), 455–465 (1964)
Guo, H.L., Yang, X.: Gradient recovery for elliptic interface problem: i. body-fitted mesh. Commun. Comput. Phys. 23(5), 1488–1511 (2018)
Guo, H.L., Xie, C., Zhao, R.: Superconvergent gradient recovery for virtual element methods. Math. Models Methods Appl. Sci. 29(11), 2007–2031 (2019)
Hille, B.: Ion Channels of Excitable Membranes, 3rd edn. Sinauer Associates, Sunderland (2001)
Horng, T.L., Lin, T.C., Liu, C., Eisenberg, B.: PNP Equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B. 116(37), 11422–11441 (2012)
Hyon, Y.K., Eisenberg, B., Liu, C.: An energetic variational approach to ion channel dynamics. Math. Method. Appl. Sci. 37(7), 952–961 (2014)
Jerome, J.W., Brosowski, B.: Evolution systems in semiconductor device modeling: a cyclic uncoupled line analysis for the gummel map. Math. Method. Appl. Sci. 9(1), 455–492 (1987)
Li, B., Zhang, Z.: Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer. Meth. Part. D. E. 15(2), 151–167 (1999)
Li, J., Ying, J.Y., Lu, B.Z.: A flux-jump preserved gradient recovery technique for accurately predicting the electrostatic field of an immersed biomolecule. J. Comput. Phys. 396, 193–208 (2019)
Liu, J.H., Jia, Y.S.: Pointwise superconvergence patch recovery for the gradient of the linear tetrahedral element. J. Comput. Anal. Appl. 16(1), 455–460 (2014)
Lu, B.Z., Holst, M.J., McCammon, J.A., Zhou, Y.C.: Poisson-nernst-planck equations for simulating biomolecular diffusion-reaction processes i: finite element solutions. J. Comput. Phys. 229(19), 6979–6994 (2010)
Lu, B.Z., Zhou, Y.C.: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes ii: size effects on ionic distributions and diffusion-reaction rates. Biophys. J. 100(10), 2475–2485 (2011)
Lu, B.Z., Zhou, Y.C., Huber, G.A., Bond, S.D., Holst, M.J., McCammon, J.A.: Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J. Chem. Phys. 127(13), 135102 (2007)
Mathur, S.R., Murthy, J.Y.: A multigrid method for the Poisson-Nernst-Planck equations. Int. J. Heat Mass Tran. 52(17-18), 4031–4039 (2009)
Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42(4), 1780–1800 (2004)
Prohl, A., Schmuck, M.: Convergent discretizations for the Nernst-Planck-Poisson system. Numer. Math. 111(4), 591–630 (2009)
Shen, R.G., Shu, S., Yang, Y., Lu, B.Z: A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations. Numer. Algo. https://doi.org/10.1007/s11075-019-00744-4 (2019)
Shi, D.Y., Yang, H.J.: Superconvergence analysis of finite element method for Poisson-Nernst-Planck equations. Numer. Meth. Part. D. E. 35, 1206–1223 (2019)
Sun, Y.Z., Sun, P.T., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson-Nernst-Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)
Tu, B., Chen, M.X., Xie, Y., Zhang, L.B., Eisenber, B., Lu, B.Z.: A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J. Comput. Chem. 34(24), 2065–2078 (2013)
Wu, J., Srinivasan, V., Xu, J., Wang, C.: Newton-krylov-multigrid algorithms for battery simulation. J. Electrochem. Soc. 149(10), 1342–1348 (2002)
Xu, J.: Two-grid discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14(4), 293–327 (2001)
Yan, N., Zhou, A.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Method. Appl. M. 190(32-33), 4289–4299 (2001)
Yang, Y., Lu, B.Z.: An error analysis for the finite element approximation to the steady-state Poisson-Nernst-Planck equations. Adv. Appl. Math. Mech. 5(1), 113–130 (2013)
Yang, Y., Zhou, A.: Local averaging based a posteriori finite element error control for quasilinear elliptic problems with application to electrical potential computation. Comput. Method. Appl. M. 196(1-3), 452–465 (2006)
Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates. Int. J. Numer. Meth. Eng. 33(7), 1331–1364 (1992)
Zhang, Z.M., Naga: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)
Zhu, Q., Lin, Q.: Superconvergence Theory of Finite Element Methods. Hunan Science Press, Changsha (1989). (in Chinese)
Acknowledgments
The authors would like to thank Dr. Minxin Chen and Dr. Shixin Xu for their valuable discussions on numerical experiments.
Funding
Y. Yang was supported by the National Natural Science Foundation of China (Nos. 11561016, 11701119, 11771105), the Guangxi Natural Science Foundation (2020GXNSFAA159098, 2017GXNSFFA198012), the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation open project fund, and the Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University. C. Liu was partially supported by NSF grant # 1759535 and the United States - Israel Binational Science Foundation (BSF) # 2024246. B. Z. Lu was supported by the National Key Research and Development Program of China (2016YFB0201304), the Science Challenge Program (No. TZ2016003), and the National Natural Science Foundation of China (No. 11771435). L. Q. Zhong was supported by the National Natural Science Foundation of China (Nos. 11671159, 12071160), the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515010724), the Characteristic Innovation Projects of Guangdong Colleges and Universities, China (No. 2018KTSCX044), and the General Project topic of Science and Technology in Guangzhou, China (No. 201904010117).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Long Chen
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, Y., Tang, M., Liu, C. et al. Superconvergent gradient recovery for nonlinear Poisson-Nernst-Planck equations with applications to the ion channel problem. Adv Comput Math 46, 78 (2020). https://doi.org/10.1007/s10444-020-09819-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-020-09819-6
Keywords
- Nonlinear Poisson-Nernst-Planck equations
- Steady state
- Finite element method
- Error estimate
- Superconvergent gradient recovery
- Ion channel