Abstract
We study a two-grid strategy for decoupling the time-dependent Poisson-Nernst-Planck equations describing the mass concentration of ions and the electrostatic potential. The computational system is decoupled to smaller systems by using coarse space solutions at each time level, which can speed up the solution process compared with the finite element method combined with the Gummel iteration. We derive the optimal error estimates in L2 norm for both semi- and fully discrete finite element approximations. Based on the a priori error estimates, the error estimates in H1 norm are presented for the two-grid algorithm. The theoretical results indicate this decoupling method can retain the same accuracy as the finite element method. Numerical experiments including the Poisson-Nernst-Planck equations for an ion channel show the efficiency and effectiveness of the decoupling two-grid method.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Elsevier, Amsterdam (1978)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)
Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437–445 (1982)
Sun, Y.Z., Sun, P.T., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson-Nernst-Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)
Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23, 489–505 (2003)
Nernst, W.: Die elektromotorische wirksamkeit der io-nen. Z. Phys. Chem. 4, 129–181 (1889)
Planck, M.: ÜBer die erregung von electricität und wärme in electrolyten. Annalen Der Physik. 275, 161–186 (1890)
Song, Y.H., Zhang, Y.J., Bajaj, C.L., Baker, N.A.: Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophys. J. 87, 1558–1566 (2004)
Zhou, Y.C., Lu, B.Z., Huber, G.A., Holst, M.J., McCammon, J.A.: Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach. J. Phys. Chem. 112, 270–275 (2008)
Prohl, A., Schmuck, M.: Convergent discretizations for the Nernst-Planck-Poisson system. Numer. Math. 111, 591–630 (2009)
Yang, Y., Lu, B.Z.: An error analysis for the finite element approximation to the steady-state Poisson-Nernst-Planck equations. Adv. Appl. Math. Mech. 5, 113–130 (2013)
Gao, H.D., He, D.D.: Linearized conservative finite element methods for the Nernst-Planck-Poisson equations. J. Sci. Comput. 72, 1269–1289 (2017)
Eisenberg, R., Chen, D.P.: Poisson-Nernst-Planck (PNP) theory of an open ionic channel. Biophys. J. 64, A22 (1993)
Lu, B.Z., Holst, M.J., McCammond, J.A., Zhou, Y.C.: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions. J. Comput. Phys. 229, 6979–6994 (2010)
Coalson, R.D., Kurnikova, M.G.: Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4, 81–93 (2005)
Singer, A., Norbury, J.: A Poisson-Nernst-Planck model for biological ion channels–an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70, 949–968 (2009)
Burger, M.: A globally convergent Gummel map for optimal dopant profiling. Math. Models Methods Appl. Sci. 19, 769–786 (2009)
Jerome, J.W., Brosowski, B.: Evolution systems in semiconductor device modeling: a cyclic uncoupled line analysis for the Gummel map. Math. Method. Appl. Sci. 9, 455–492 (1987)
Lu, B.Z., Zhou, Y.C.: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys J. 100, 2475–2485 (2011)
Flavell, A., Machen, M., Eisenberg, R., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson-Nernst-Planck equations. J. Comput. Electron. 13, 235–249 (2014)
He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson-Nernst-Planck system. Appl. Math. Comput. 287–288, 214–223 (2016)
Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations. J. Comput. Phys. 268, 363–376 (2014)
Mathur, S.R., Murthy, J.Y.: A multigrid method for the Poisson-Nernst-Planck equations. Int. J. Heat Mass Transfer. 52, 4031–4039 (2009)
Wu, J., Srinivasan, V., Xu, J., Wang, C.: Newton-Krylov-multigrid algorithms for battery simulation. J. Electrochem. Soc. 149, A1342–A1348 (2002)
Jin, J.C., Shu, S., Xu, J.C.: A two-grid discretization method for decoupling systems of partial differential equations. Math. Comput. 75, 1617–1626 (2006)
Mu, M., Xu, J.C.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)
Cai, M.C., Mu, M., Xu, J.C.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM. J. Numer. Anal. 47, 3325–3338 (2009)
Xu, J.C.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)
Chen, Y., Chen, L., Zhang, X.: Two-grid method for nonlinear parabolic equations by expanded mixed finite element methods. Numer. Meth. Part. D. E 29, 1238–1256 (2013)
Myron, L., Iii, B.A.: A two-grid method for mixed finite-element solution of reaction-diffusion equations. Numer. Meth. Part. D. E. 15, 317–332 (1999)
Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Meth. Eng. 57, 193–209 (2003)
He, Y.N.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)
He, Y.N., Liu, K.M.: A multilevel finite element method in spacetime for the Navier-Stokes problem. Numer. Methods Partial Differential Equations 21, 1052–1078 (2005)
Chen, Y., Hu, H.: Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics. Commun. Comput. Phys. 19, 1503–1528 (2016)
Wang, Y., Chen, Y.: A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods. J. Math. Anal. Appl. 468, 406–422 (2018)
Xu, S., Chen, M., Majd, S., Yue, X., Liu, C.: Modeling and simulating asymmetrical conductance changes in gramicidin pores. Mol. Based Math. Biol. 2, 34–55 (2014)
Xu, J., Zikatanov, L.: A monotone finite element scheme for convection-diffusion equations. Math. Comp. 68, 1429–1446 (1999)
Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 20, 733–737 (1966)
Chen, Y., Wu, L.: Second-order elliptic equations and elliptic systems. Translations of Mathematical Monographs 174 AMS (1998)
Araya, R., Venegas, P.: An a posteriori error estimator for an unsteady advection-diffusion-reaction problem. Comput. Math. Appl. 66, 2456–2476 (2014)
Acknowledgments
The authors would like to thank Dr. Chunshen Feng and Dr. Shixin Xu for their valuable discussions on numerical experiments.
Funding
S. Shu was supported by the China NSF (NSFC 11571293). Y. Yang was supported by the China NSF (NSFC 11561016, NSFC 11661027, NSFC 11561015), Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation open fund, and the Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University. B. Z. Lu was supported by Science Challenge Program under grant number TZ2016003, National Key Research and Development Program of China (Grant No. 2016YFB0201304), and China NSF (NSFC 21573274, 11771435). R. G. Shen was supported by Postgraduate Scientific Research and Innovation Fund of the Hunan Provincial Education Department (CX2017B268).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shen, R., Shu, S., Yang, Y. et al. A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations. Numer Algor 83, 1613–1651 (2020). https://doi.org/10.1007/s11075-019-00744-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00744-4
Keywords
- Poisson-Nernst-Planck equations
- Decoupling method
- Two-grid method
- Semi-discretization
- Full discretization
- Optimal error estimate
- Gummel iteration