Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study a two-grid strategy for decoupling the time-dependent Poisson-Nernst-Planck equations describing the mass concentration of ions and the electrostatic potential. The computational system is decoupled to smaller systems by using coarse space solutions at each time level, which can speed up the solution process compared with the finite element method combined with the Gummel iteration. We derive the optimal error estimates in L2 norm for both semi- and fully discrete finite element approximations. Based on the a priori error estimates, the error estimates in H1 norm are presented for the two-grid algorithm. The theoretical results indicate this decoupling method can retain the same accuracy as the finite element method. Numerical experiments including the Poisson-Nernst-Planck equations for an ion channel show the efficiency and effectiveness of the decoupling two-grid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Elsevier, Amsterdam (1978)

    MATH  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)

    Book  Google Scholar 

  4. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437–445 (1982)

    Article  MathSciNet  Google Scholar 

  5. Sun, Y.Z., Sun, P.T., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson-Nernst-Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)

    Article  MathSciNet  Google Scholar 

  6. Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23, 489–505 (2003)

    Article  MathSciNet  Google Scholar 

  7. Nernst, W.: Die elektromotorische wirksamkeit der io-nen. Z. Phys. Chem. 4, 129–181 (1889)

    Google Scholar 

  8. Planck, M.: ÜBer die erregung von electricität und wärme in electrolyten. Annalen Der Physik. 275, 161–186 (1890)

    Article  Google Scholar 

  9. Song, Y.H., Zhang, Y.J., Bajaj, C.L., Baker, N.A.: Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Biophys. J. 87, 1558–1566 (2004)

    Article  Google Scholar 

  10. Zhou, Y.C., Lu, B.Z., Huber, G.A., Holst, M.J., McCammon, J.A.: Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach. J. Phys. Chem. 112, 270–275 (2008)

    Article  Google Scholar 

  11. Prohl, A., Schmuck, M.: Convergent discretizations for the Nernst-Planck-Poisson system. Numer. Math. 111, 591–630 (2009)

    Article  MathSciNet  Google Scholar 

  12. Yang, Y., Lu, B.Z.: An error analysis for the finite element approximation to the steady-state Poisson-Nernst-Planck equations. Adv. Appl. Math. Mech. 5, 113–130 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gao, H.D., He, D.D.: Linearized conservative finite element methods for the Nernst-Planck-Poisson equations. J. Sci. Comput. 72, 1269–1289 (2017)

    Article  MathSciNet  Google Scholar 

  14. Eisenberg, R., Chen, D.P.: Poisson-Nernst-Planck (PNP) theory of an open ionic channel. Biophys. J. 64, A22 (1993)

    Google Scholar 

  15. Lu, B.Z., Holst, M.J., McCammond, J.A., Zhou, Y.C.: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions. J. Comput. Phys. 229, 6979–6994 (2010)

    Article  MathSciNet  Google Scholar 

  16. Coalson, R.D., Kurnikova, M.G.: Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4, 81–93 (2005)

    Article  Google Scholar 

  17. Singer, A., Norbury, J.: A Poisson-Nernst-Planck model for biological ion channels–an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70, 949–968 (2009)

    Article  MathSciNet  Google Scholar 

  18. Burger, M.: A globally convergent Gummel map for optimal dopant profiling. Math. Models Methods Appl. Sci. 19, 769–786 (2009)

    Article  MathSciNet  Google Scholar 

  19. Jerome, J.W., Brosowski, B.: Evolution systems in semiconductor device modeling: a cyclic uncoupled line analysis for the Gummel map. Math. Method. Appl. Sci. 9, 455–492 (1987)

    Article  MathSciNet  Google Scholar 

  20. Lu, B.Z., Zhou, Y.C.: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys J. 100, 2475–2485 (2011)

    Article  Google Scholar 

  21. Flavell, A., Machen, M., Eisenberg, R., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson-Nernst-Planck equations. J. Comput. Electron. 13, 235–249 (2014)

    Article  Google Scholar 

  22. He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson-Nernst-Planck system. Appl. Math. Comput. 287–288, 214–223 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations. J. Comput. Phys. 268, 363–376 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mathur, S.R., Murthy, J.Y.: A multigrid method for the Poisson-Nernst-Planck equations. Int. J. Heat Mass Transfer. 52, 4031–4039 (2009)

    Article  Google Scholar 

  25. Wu, J., Srinivasan, V., Xu, J., Wang, C.: Newton-Krylov-multigrid algorithms for battery simulation. J. Electrochem. Soc. 149, A1342–A1348 (2002)

    Article  Google Scholar 

  26. Jin, J.C., Shu, S., Xu, J.C.: A two-grid discretization method for decoupling systems of partial differential equations. Math. Comput. 75, 1617–1626 (2006)

    Article  MathSciNet  Google Scholar 

  27. Mu, M., Xu, J.C.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  Google Scholar 

  28. Cai, M.C., Mu, M., Xu, J.C.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM. J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MathSciNet  Google Scholar 

  29. Xu, J.C.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)

    Article  MathSciNet  Google Scholar 

  30. Chen, Y., Chen, L., Zhang, X.: Two-grid method for nonlinear parabolic equations by expanded mixed finite element methods. Numer. Meth. Part. D. E 29, 1238–1256 (2013)

    Article  MathSciNet  Google Scholar 

  31. Myron, L., Iii, B.A.: A two-grid method for mixed finite-element solution of reaction-diffusion equations. Numer. Meth. Part. D. E. 15, 317–332 (1999)

    Article  MathSciNet  Google Scholar 

  32. Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Meth. Eng. 57, 193–209 (2003)

    Article  MathSciNet  Google Scholar 

  33. He, Y.N.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MathSciNet  Google Scholar 

  34. He, Y.N., Liu, K.M.: A multilevel finite element method in spacetime for the Navier-Stokes problem. Numer. Methods Partial Differential Equations 21, 1052–1078 (2005)

    Article  MathSciNet  Google Scholar 

  35. Chen, Y., Hu, H.: Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics. Commun. Comput. Phys. 19, 1503–1528 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y., Chen, Y.: A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods. J. Math. Anal. Appl. 468, 406–422 (2018)

    Article  MathSciNet  Google Scholar 

  37. Xu, S., Chen, M., Majd, S., Yue, X., Liu, C.: Modeling and simulating asymmetrical conductance changes in gramicidin pores. Mol. Based Math. Biol. 2, 34–55 (2014)

    MATH  Google Scholar 

  38. Xu, J., Zikatanov, L.: A monotone finite element scheme for convection-diffusion equations. Math. Comp. 68, 1429–1446 (1999)

    Article  MathSciNet  Google Scholar 

  39. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  40. Chen, Y., Wu, L.: Second-order elliptic equations and elliptic systems. Translations of Mathematical Monographs 174 AMS (1998)

  41. Araya, R., Venegas, P.: An a posteriori error estimator for an unsteady advection-diffusion-reaction problem. Comput. Math. Appl. 66, 2456–2476 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Chunshen Feng and Dr. Shixin Xu for their valuable discussions on numerical experiments.

Funding

S. Shu was supported by the China NSF (NSFC 11571293). Y. Yang was supported by the China NSF (NSFC 11561016, NSFC 11661027, NSFC 11561015), Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation open fund, and the Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University. B. Z. Lu was supported by Science Challenge Program under grant number TZ2016003, National Key Research and Development Program of China (Grant No. 2016YFB0201304), and China NSF (NSFC 21573274, 11771435). R. G. Shen was supported by Postgraduate Scientific Research and Innovation Fund of the Hunan Provincial Education Department (CX2017B268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, R., Shu, S., Yang, Y. et al. A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations. Numer Algor 83, 1613–1651 (2020). https://doi.org/10.1007/s11075-019-00744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00744-4

Keywords

Mathematics Subject Classification (2010)

Navigation